Jump to content

NASA Releases Hubble Image Taken in New Pointing Mode


NASA

Recommended Posts

  • Publishers

2 min read

NASA Releases Hubble Image Taken in New Pointing Mode

A galaxy against a black backdrop dotted with more distant galaxies and a few foreground stars. The galaxy is slightly tilted toward us, providing a good view of dark dust lanes from slightly above. They are backlit by the galaxy’s core. This dust appears rusty-brown. The core itself glows brightly in a yellowish light as brilliant-blue regions sparkle through the dust. Several background galaxies also are visible, including an edge-on spiral just to the left of NGC 1546.
This NASA Hubble Space Telescope features the galaxy NGC 1546.
NASA, ESA, STScI, David Thilker (JHU)

NASA’s Hubble Space Telescope has taken its first new images since changing to an alternate operating mode that uses one gyro.

The spacecraft returned to science operations June 14 after being offline for several weeks due to an issue with one of its gyroscopes (gyros), which help control and orient the telescope.

This new image features NGC 1546, a nearby galaxy in the constellation Dorado. The galaxy’s orientation gives us a good view of dust lanes from slightly above and backlit by the galaxy’s core. This dust absorbs light from the core, reddening it and making the dust appear rusty-brown. The core itself glows brightly in a yellowish light indicating an older population of stars. Brilliant-blue regions of active star formation sparkle through the dust. Several background galaxies also are visible, including an edge-on spiral just to the left of NGC 1546.

Hubble’s Wide Field Camera 3 captured the image as part of a joint observing program between Hubble and NASA’s James Webb Space Telescope. The program also uses data from the Atacama Large Millimeter/submillimeter Array, allowing scientists to obtain a highly detailed, multiwavelength view of how stars form and evolve.

The image represents one of the first observations taken with Hubble since transitioning to the new pointing mode, enabling more consistent science operations. The NASA team expects that Hubble can do most of its science observations in this new mode, continuing its groundbreaking observations of the cosmos.

“Hubble’s new image of a spectacular galaxy demonstrates the full success of our new, more stable pointing mode for the telescope,” said Dr. Jennifer Wiseman, senior project scientist for Hubble at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “We’re poised now for many years of discovery ahead, and we’ll be looking at everything from our solar system to exoplanets to distant galaxies. Hubble plays a powerful role in NASA’s astronomical toolkit.”

Launched in 1990, Hubble has been observing the universe for more than three decades, recently celebrating its 34th anniversary. Read more about some of Hubble’s greatest scientific discoveries.

Resources

Media Contact:

Claire Andreoli
NASA’s Goddard Space Flight CenterGreenbelt, MD
claire.andreoli@nasa.gov

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      This image shows an aviation version of a smartphone navigation app that makes suggestions for an aircraft to fly an alternate, more efficient route. The new trajectories are based on information available from NASA’s Digital Information Platform and processed by the Collaborative Departure Digital Rerouting tool.NASA Just like your smartphone navigation app can instantly analyze information from many sources to suggest the best route to follow, a NASA-developed resource is now making data available to help the aviation industry do the same thing.
      To assist air traffic managers in keeping airplanes moving efficiently through the skies, information about weather, potential delays, and more is being gathered and processed to support decision making tools for a variety of aviation applications.
      Appropriately named the Digital Information Platform (DIP), this living database hosts key data gathered by flight participants such as airlines or drone operators. It will help power additional tools that, among other benefits, can save you travel time.
      Ultimately, the aviation industry… and even the flying public, will benefit from what we develop.
      Swati Saxena
      NASA Aerospace Engineer
      “Through DIP we’re also demonstrating how to deliver digital services for aviation users via a modern cloud-based, service-oriented architecture,” said Swati Saxena, DIP project manager at NASA’s Ames Research Center in California.
      The intent is not to compete with others. Instead, the hope is that industry will see DIP as a reference they can use in developing and implementing their own platforms and digital services.
      “Ultimately, the aviation industry – the Federal Aviation Administration, commercial airlines, flight operators, and even the flying public – will benefit from what we develop,” Saxena said.
      The platform and digital services have even more benefits than just saving some time on a journey.
      For example, NASA recently collaborated with airlines to demonstrate a traffic management tool that improved traffic flow at select airports, saving thousands of pounds of jet fuel and significantly reducing carbon emissions.
      Now, much of the data gathered in collaboration with airlines and integrated on the platform is publicly available. Users who qualify can create a guest account and access DIP data at a new website created by the project.
      It’s all part of NASA’s vision for 21st century aviation involving revolutionary next-generation future airspace and safety tools.
      Managing Future Air Traffic
      During the 2030s and beyond, the skies above the United States are expected to become much busier.
      Facing this rising demand, the current National Airspace System – the network of U.S. aviation infrastructure including airports, air navigation facilities, and communications – will be challenged to keep up. DIP represents a key piece of solving that challenge.
      NASA’s vision for future airspace and safety involves new technology to create a highly automated, safe, and scalable environment.
      What this vision looks like is a flight environment where many types of vehicles and their pilots, as well as air traffic managers, use state-of-the-art automated tools and systems that provide highly detailed and curated information.
      These tools leverage new capabilities like machine learning and artificial intelligence to streamline efficiency and handle the increase in traffic expected in the coming decades.
      Digital Services Ecosystem in Action
      To begin implementing this new vision, our aeronautical innovators are evaluating their platform, DIP, and services at several airports in Texas. This initial stage is a building block for larger such demonstrations in the future.
      “These digital services are being used in the live operational environment by our airline partners to improve efficiency of the current airspace operations,” Saxena said. “The tools are currently in use in the Dallas/Fort Worth area and will be deployed in the Houston airspace in 2025.”
      The results from these digital tools are already making a difference.
      Proven Air Traffic Results
      During 2022, a NASA machine learning-based tool named Collaborative Digital Departure Rerouting, designed to improve the flow of air traffic and prevent flight delays, saved more than 24,000 lbs. (10,886 kg.) of fuel by streamlining air traffic in the Dallas area.
      If such tools were used across the entire country, the improvements made in efficiency, safety, and sustainability would make a notable difference to the flying public and industry.
      “Continued agreements with airlines and the aviation industry led to the creation and expansion of this partnership ecosystem,” Saxena said. “There have been benefits across the board.”
      DIP was developed under NASA’s Airspace Operations and Safety Program.
      Learn about NASA’s Collaborative Digital Departure Rerouting tool and how it uses information from the Digital Information Platform to provide airlines with routing options similar to how drivers navigate using cellphone apps. About the Author
      John Gould
      Aeronautics Research Mission DirectorateJohn Gould is a member of NASA Aeronautics' Strategic Communications team at NASA Headquarters in Washington, DC. He is dedicated to public service and NASA’s leading role in scientific exploration. Prior to working for NASA Aeronautics, he was a spaceflight historian and writer, having a lifelong passion for space and aviation.
      Facebook logo @NASA@NASAaero@NASA_es @NASA@NASAaero@NASA_es Instagram logo @NASA@NASAaero@NASA_es Linkedin logo @NASA Explore More
      2 min read NASA Prepares for Air Taxi Passenger Comfort Studies
      Article 2 weeks ago 2 min read Hypersonic Technology Project Overview
      Article 3 weeks ago 2 min read Hypersonics Technical Challenges
      Article 3 weeks ago Keep Exploring Discover More Topics From NASA
      Missions
      Artemis
      Aeronautics STEM
      Explore NASA’s History
      Share
      Details
      Last Updated Jul 12, 2024 EditorJim BankeContactJim Bankejim.banke@nasa.gov Related Terms
      Aeronautics Aeronautics Research Mission Directorate Air Traffic Management – Exploration Air Traffic Solutions Airspace Operations and Safety Program View the full article
    • By NASA
      Apollo astronaut Buzz Aldrin poses for a photograph beside the deployed United States flag during an Apollo 11 moonwalk on July 20, 1969. The Lunar Module is on the left, and the footprints of the astronauts are clearly visible in the soil of the moon.Credit: NASA As the agency explores more of the Moon than ever before under the Artemis campaign, NASA will celebrate the 55th anniversary of the first astronauts landing on the Moon through a variety of in-person, virtual, and engagement activities nationwide between Monday, July 15, and Thursday, July 25.
      Events will honor America’s vision and technology that enabled the Apollo 11 crewed lunar landing on July 20, 1969, as well as Apollo-era inventions and techniques that spread into public life, many of which are still in use today. Activities also will highlight NASA’s Artemis campaign, which includes landing the first woman, first person of color, and first international astronaut on the Moon, inspiring great achievements, exploration, and scientific discovery for the benefit of all.
      NASA’s subject matter experts are available for a limited number of interviews about the anniversary. To request an interview virtually or in person, contact Jessica Taveau in the newsroom: jessica.c.taveau@nasa.gov.
      During the week of July 15, the agency also will share the iconic bootprint image and the significance of Apollo 11 to NASA’s mission, as well as use the #Apollo11 hashtag, across its digital platforms online.
      Additional activities from NASA include:
      Monday, July 15 and Tuesday, July 16, NASA’s Michoud Assembly Facility in New Orleans, Louisiana: NASA will host the rollout of the agency’s Artemis II SLS (Space Launch System) core stage. Friday, July 19, NASA’s Johnson Space Center in Houston: In a dedication and ribbon cutting, the center will name its building 12 the ‘Dorothy Vaughan Center in Honor of the Women of Apollo.’ Vaughan was a mathematician, computer programmer, and NASA’s first Black manager. Sunday, July 21, NASA’s Goddard Space Flight Center in Greenbelt, Maryland: NASA Goddard will host a model rocket contest conducted by the National Association of Rocketry Headquarters Astro Modeling Section. This free contest is open to all model rocketeers and the public.  Other activities include:
      Tuesday, July 16 through Wednesday, July 24, Space Center Houston: The center will host pop-up science labs, mission briefings, special tram tours that feature the Mission Control Center at NASA Johnson, and more. Friday, July 19 through Saturday, July 20, National Cathedral in Washington: The cathedral will host a festival marking the 50th anniversary of its Space Window, which contains a piece of lunar rock that was donated by NASA and the crew of Apollo 11. Thursday, July 25, San Diego Comic-Con: NASA representatives will participate in a panel entitled ‘Exploring the Moon: the Artemis Generation.’ Panelists are:Stan Love, NASA astronaut A.C. Charania, NASA chief technologist Dionne Hernandez-Lugo, NASA’s Gateway Program Jackelynne Silva-Martinez, NASA Human Health and Performance For more details about NASA’s Apollo Program, please visit:
      https://www.nasa.gov/the-apollo-program
      -end-
      Cheryl Warner / Jessica Taveau
      Headquarters, Washington
      202-356-1600
      cheryl.m.warner@nasa.gov / jessica.c.taveau@nasa.gov
      Share
      Details
      Last Updated Jul 12, 2024 LocationNASA Headquarters Related Terms
      Apollo 11 Artemis View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Paul Dumbacher, right, lead test engineer for the Propulsion Test Branch at NASA’s Marshall Space Flight Center in Huntsville, Alabama, confers with Meredith Patterson, solid propulsion systems engineer, as they install the 11-inch hybrid rocket motor testbed into its cradle in Marshall’s East Test Stand. The new testbed, offering versatile, low-cost test opportunities to NASA propulsion engineers and their government, academic, and industry partners, reflects the collaboration of dozens of team members across multiple departments at Marshall. NASA/Charles Beason In June, engineers at NASA’s Marshall Space Flight Center in Huntsville, Alabama, unveiled an innovative, 11-inch hybrid rocket motor testbed.
      The new hybrid testbed, which features variable flow capability and a 20-second continuous burn duration, is designed to provide a low-cost, quick-turnaround solution for conducting hot-fire tests of advanced nozzles and other rocket engine hardware, composite materials, and propellants.
      Solid rocket propulsion remains a competitive, reliable technology for various compact and heavy-lift rockets as well as in-space missions, offering low propulsion element mass, high energy density, resilience in extreme environments, and reliable performance.
      “It’s time consuming and costly to put a new solid rocket motor through its paces – identifying how materials perform in extreme temperatures and under severe structural and dynamic loads,” said Benjamin Davis, branch chief of the Solid Propulsion and Pyrotechnic Devices Branch of Marshall’s Engineering Directorate. “In today’s fast-paced, competitive environment, we wanted to find a way to condense that schedule. The hybrid testbed offers an exciting, low-cost solution.”
      Initiated in 2020, the project stemmed from NASA’s work to develop new composite materials, additively manufactured – or 3D-printed – nozzles, and other components with proven benefits across the spacefaring spectrum, from rockets to planetary landers.
      After analyzing future industry requirements, and with feedback from NASA’s aerospace partners, the Marshall team recognized that their existing 24-inch rocket motor testbed – a subscale version of the Space Launch System booster – could prove too costly for small startups. Additionally, conventional, six-inch test motors limited flexible configuration and required multiple tests to achieve all customer goals. The team realized what industry needed most was an efficient, versatile third option.
      “The 11-inch hybrid motor testbed offers the instrumentation, configurability, and cost-efficiency our government, industry, and academic partners need,” said Chloe Bower, subscale solid rocket motor manufacturing lead at Marshall. “It can accomplish multiple test objectives simultaneously – including different nozzle configurations, new instrumentation or internal insulation, and various propellants or flight environments.”
      “That quicker pace can reduce test time from months to weeks or days,” said Precious Mitchell, solid propulsion design lead for the project.
      Engineers at NASA’s Marshall Space Flight Center in Huntsville, Alabama, assess components of the 11-inch hybrid rocket motor testbed in the wake of successful testing in June. Among Marshall personnel leading in-house development of the new testbed are, from left, Chloe Bower, subscale solid rocket motor manufacturing lead; Jacobs manufacturing engineer Shelby Westrich; and Precious Mitchell, solid propulsion design lead. NASA/Benjamin Davis Another feature of great interest is the on/off switch. “That’s one of the big advantages to a hybrid testbed,” Mitchell continued. “With a solid propulsion system, once it’s ignited, it will burn until the fuel is spent. But because there’s no oxidizer in hybrid fuel, we can simply turn it off at any point if we see anomalies or need to fine-tune a test element, yielding more accurate test results that precisely meet customer needs.”
      The team expects to deliver to NASA leadership final test data later this summer. For now, Davis congratulates the Marshall propulsion designers, analysts, chemists, materials engineers, safety personnel, and test engineers who collaborated on the new testbed.
      “We’re not just supporting the aerospace industry in broad terms,” he said. “We’re also giving young NASA engineers a chance to get their hands dirty in a practical test environment solving problems. This work helps educate new generations who will carry on NASA’s mission in the decades to come.”
      For nearly 65 years, Marshall teams have led development of the U.S. space program’s most powerful rocket engines and spacecraft, from the Apollo-era Saturn V rocket and the space shuttle to today’s cutting-edge propulsion systems, including NASA’s newest rocket, the Space Launch System. NASA technology testbeds designed and built by Marshall engineers and their partners have shaped the reliable technologies of spaceflight and continue to enable discovery, testing, and certification of advanced rocket engine materials and manufacturing techniques. 
      Learn more about NASA Marshall capabilities at:
      https://www.nasa.gov/marshall-space-flight-center-capabilities
      Ramon J. Osorio
      Marshall Space Flight Center, Huntsville, Alabama
      256-544-0034
      ramon.j.osorio@nasa.gov
      Share
      Details
      Last Updated Jul 12, 2024 EditorBeth RidgewayLocationMarshall Space Flight Center Related Terms
      Marshall Space Flight Center Explore More
      15 min read The Marshall Star for July 10, 2024
      Article 2 days ago 4 min read NASA Marshall Researchers Battle Biofilm in Space
      Article 2 days ago 30 min read The Marshall Star for July 3, 2024
      Article 1 week ago View the full article
    • By NASA
      3 min read
      Hubble Measures the Distance to a Supernova
      This NASA/ESA Hubble Space Telescope image features the galaxy NGC 3810. ESA/Hubble & NASA, D. Sand, R. J. Foley Measuring the distance to truly remote objects like galaxies, quasars, and galaxy clusters is a crucial task in astrophysics, particularly when it comes to studying the early universe, but it’s a difficult one to complete. We can only measure the distances to a few nearby objects like the Sun, planets, and some nearby stars directly. Beyond that, astronomers need to use various indirect methods; one of the most important examines Type Ia supernovae, and this is where the NASA/ESA Hubble Space Telescope excels.
      NGC 3810, the galaxy featured in this image, was the host of a Type Ia supernova in 2022. In early 2023, Hubble focused on this and a number of other galaxies to closely examine recent Type Ia supernovae. Type Ia supernovae are the result of a white dwarf exploding, and their peak brightness is very consistent. This attribute allows astronomers to use Type Ia supernovae to measure distances: we know how bright a Type Ia supernova should be, so we can tell how far away it must be by how dim it appears. One snag with this method is intergalactic dust. Because intergalactic dust blocks some of the supernova’s light, astronomers need to determine how much light the dust reduces to accurately measure the supernova’s brightness and calculate its distance. Hubble’s unique capabilities offer them a clever way of doing this.
      Astronomers use Hubble to take images of the same Type Ia supernovae in ultraviolet light, which the dust almost completely blocks out, and in infrared light, which passes through dust nearly unaffected. By carefully noting how much light comes through at each wavelength, astronomers can determine how much dust lies between Hubble and the supernova, letting them confidently calibrate the relationship between a supernova’s brightness and its distance. Hubble’s unique capability to observe in ultraviolet and infrared wavelengths of light in great detail with the same instrument makes it the perfect tool for these types of observations. Indeed, some of the data used to make this beautiful image of NGC 3810 focused on its 2022 supernova. You can see it as a point of light just below the galactic nucleus in the annotated image below.
      This annotated Hubble image of NGC 3810 denotes the location of the Type Ia supernovae SN 2022zut, It was the eighteen thousand, one hundred and forty-second supernova found in 2022! ESA/Hubble & NASA, D. Sand, R. J. Foley There are many ways to measure cosmic distances, but Type Ia supernovae are one of the most useful and accurate tools because they are so bright. Astronomers must use other methods as well, either as an independent check against other distance measurements, or to measure at much closer or farther distances. One such method, that also works for galaxies, is comparing their rotation speed to their brightness; based on that method, NGC 3810 is about 50 million light-years from Earth.

      Download the featured image


      Download the annotated image

      Explore More

      Hubble Space Telescope


      Hubble’s Galaxies


      The Death Throes of Stars


      Exploring the Birth of Stars

      Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contact:
      Claire Andreoli
      NASA’s Goddard Space Flight Center, Greenbelt, MD
      claire.andreoli@nasa.gov
      Share








      Details
      Last Updated Jul 12, 2024 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms
      Astrophysics Astrophysics Division Galaxies Goddard Space Flight Center Hubble Space Telescope Missions Spiral Galaxies Stars Supernovae The Universe Keep Exploring Discover More Topics From Hubble
      Hubble Space Telescope


      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


      Discovering a Runaway Universe


      Our cosmos is growing, and that expansion rate is accelerating.


      Hubble E-books



      Hubble Images


      View the full article
    • By NASA
      Cosmic Road Trip: four distinct composite images from NASA’s Chandra X-ray Observatory and the James Webb Space Telescope, presented in a two-by-two grid, Rho Ophiuchi at lower right, the heart of the Orion Nebula at upper right, the galaxy NGC 3627 at lower left and the galaxy cluster MACS J0416.X-ray: NASA/CXC/SAO; Optical/Infrared: (Hubble) NASA/ESA/STScI; IR: (JWST) NASA/ESA/CSA/STScI It’s time to take a cosmic road trip using light as the highway and visit four stunning destinations across space. The vehicles for this space get-away are NASA’s Chandra X-ray Observatory and James Webb Space Telescope.
      The first stop on this tour is the closest, Rho Ophiuchi, at a distance of about 390 light-years from Earth. Rho Ophiuchi is a cloud complex filled with gas and stars of different sizes and ages. Being one of the closest star-forming regions, Rho Ophiuchi is a great place for astronomers to study stars. In this image, X-rays from Chandra are purple revealing infant stars that violently flare and produce X-rays. Infrared data from Webb are red, yellow, cyan, light blue and darker blue and provide views of the spectacular regions of gas and dust.
      X-ray: NASA/CXC/MIT/C. Canizares; IR: NASA/ESA/CSA/STScI/K. Pontoppidan; Image Processing: NASA/ESA/STScI/Alyssa Pagan, NASA/CXC/SAO/L. Frattare and J. Major The next destination is the Orion Nebula. Still located in the Milky Way galaxy, this region is a little bit farther from our home planet at about 1,500 light-years away. If you look just below the middle of the three stars that make up the “belt” in the constellation of Orion, you may be able to see this nebula through a small telescope. With Chandra and Webb, however, we get to see so much more. Chandra reveals young stars that glow brightly in X-rays, colored in red, green, and blue, while Webb shows the gas and dust in darker red that will help build the next generation of stars here.
      X-ray: NASA/CXC/Penn State/E.Fei It’s time to leave our galaxy and visit another. Like the Milky Way, NGC 3627 is a spiral galaxy that we see at a slight angle. NGC 3627 is known as a “barred” spiral galaxy because of the rectangular shape of its central region. From our vantage point, we can also see two distinct spiral arms that appear as arcs. X-rays from Chandra in purple show evidence for a supermassive black hole in its center while Webb finds the dust, gas, and stars throughout the galaxy in red, green, and blue. This image also contains optical data from the Hubble Space Telescope in red, green, and blue.
      Spiral galaxy NGC 3627.X-ray: NASA/CXC/SAO; Optical: NASA/ESO/STScI, ESO/WFI; Infrared: NASA/ESA/CSA/STScI/JWST; Image Processing:/NASA/CXC/SAO/J. Major Our final landing place on this trip is the farthest and the biggest. MACS J0416 is a galaxy cluster, which are among the largest objects in the Universe held together by gravity. Galaxy clusters like this can contain hundreds or even thousands of individual galaxies all immersed in massive amounts of superheated gas that Chandra can detect. In this view, Chandra’s X-rays in purple show this reservoir of hot gas while Hubble and Webb pick up the individual galaxies in red, green, and blue.
      ACS J0416 galaxy cluster.X-ray: NASA/CXC/SAO/G. Ogrean et al.; Optical/Infrared: (Hubble) NASA/ESA/STScI; IR: (JWST) NASA/ESA/CSA/STScI/Jose M. Diego (IFCA), Jordan C. J. D’Silva (UWA), Anton M. Koekemoer (STScI), Jake Summers (ASU), Rogier Windhorst (ASU), Haojing Yan (University of Missouri) NASA’s Marshall Space Flight Center manages the Chandra program. The Smithsonian Astrophysical Observatory’s Chandra X-ray Center controls science from Cambridge Massachusetts and flight operations from Burlington, Massachusetts.
      Read more from NASA’s Chandra X-ray Observatory.
      For more Chandra images, multimedia and related materials, visit:
      https://www.nasa.gov/mission/chandra-x-ray-observatory/
      Visual Description:
      This release features four distinct composite images from NASA’s Chandra X-ray Observatory and the James Webb Space Telescope, presented in a two-by-two grid.
      At our lower right is Rho Ophiuchi, a cloud complex filled with gas, and dotted with stars. The murky green and gold cloud resembles a ghostly head in profile, swooping down from the upper left, trailing tendrils of hair. Cutting across the bottom edge and lower righthand corner of the image is a long, narrow, brick red cloud which resembles the ember of a stick pulled from a fire. Several large white stars dot the image. Many are surrounded by glowing neon purple rings, and gleam with diffraction spikes.
      At our upper right of the grid is a peek into the heart of the Orion Nebula, which blankets the entire image. Here, the young star nursery resembles a dense, stringy, dusty rose cloud, peppered with thousands of glowing golden, white, and blue stars. Layers of cloud around the edges of the image, and a concentration of bright stars at its distant core, help convey the depth of the nebula.
      In the lower left of the two-by-two grid is a hazy image of a spiral galaxy known as NGC 3627. Here, the galaxy appears pitched at an oblique angle, tilted from our upper left down to our lower right. Much of its face is angled toward us, making its spiral arms, composed of red and purple dots, easily identifiable. Several bright white dots ringed with neon purple speckle the galaxy. At the galaxy’s core, where the spiral arms converge, a large white and purple glow identified by Chandra provides evidence of a supermassive black hole.
      At the upper left of the grid is an image of the distant galaxy cluster known as MACS J0416. Here, the blackness of space is packed with glowing dots and tiny shapes, in whites, purples, oranges, golds, and reds, each a distinct galaxy. Upon close inspection (and with a great deal of zooming in!) the spiraling arms of some of the seemingly tiny galaxies are revealed in this highly detailed image. Gently arched across the middle of the frame is a soft band of purple; a reservoir of superheated gas detected by Chandra.
      News Media Contact
      Megan Watzke
      Chandra X-ray Center
      Cambridge, Mass.
      617-496-7998
      Lane Figueroa
      Marshall Space Flight Center
      Huntsville, Ala.
      256-544-0034
      View the full article
  • Check out these Videos

×
×
  • Create New...