Jump to content

Recommended Posts

  • Publishers
Posted
20 Min Read

The Marshall Star for June 18, 2024

: The husband-and-wife duo of Terra Engineering, Valerie and Todd Mendenhall, receive the $1 million prize June 12, for winning the final phase of NASA’s Break the Ice Lunar Challenge at Alabama A&M’s Agribition Center in Huntsville. With the Terra Engineering team at the awards ceremony are from left, Daniel K. Wims, Alabama A&M University president; Joseph Pelfrey, NASA Marshall Space Flight center director; NASA’s Break the Ice Challenge Manager Naveen Vetcha, and Majed El-Dweik, Alabama A&M University’s vice president of Research & Economic Development.

California Teams Win $1.5 Million in NASA’s Break the Ice Lunar Challenge

By Savannah Bullard

After two days of live competitions, two teams from southern California are heading home with a combined $1.5 million from NASA’s Break the Ice Lunar Challenge

Since 2020, competitors from around the world have competed in this challenge with the common goal of inventing robots that can excavate and transport the icy regolith on the Moon. The lunar South Pole is the targeted landing site for crewed Artemis missions, so utilizing all resources in that area, including the ice within the dusty regolith inside the permanently shadowed regions, is vital for the success of a sustained human lunar presence.

A older man and wife stand in green shirts holding a large check for a million dollars after winning NASA's Break the Ice Lunar Challenge
The husband-and-wife duo of Terra Engineering, Valerie and Todd Mendenhall, receive the $1 million prize June 12, for winning the final phase of NASA’s Break the Ice Lunar Challenge at Alabama A&M’s Agribition Center in Huntsville. With the Terra Engineering team at the awards ceremony are from left, Daniel K. Wims, Alabama A&M University president; Joseph Pelfrey, NASA Marshall Space Flight center director; NASA’s Break the Ice Challenge Manager Naveen Vetcha, and Majed El-Dweik, Alabama A&M University’s vice president of Research & Economic Development.
NASA/Jonathan Deal

On Earth, the mission architectures developed in this challenge aim to help guide machine design and operation concepts for future mining and excavation operations and equipment for decades.

“Break the Ice represents a significant milestone in our journey toward sustainable lunar exploration and a future human presence on the Moon,” said Joseph Pelfrey, center director of NASA’s Marshall Space Flight Center. “This competition has pushed the boundaries of what is possible by challenging the brightest minds to devise groundbreaking solutions for excavating lunar ice, a crucial resource for future missions. Together, we are forging a future where humanity ventures further into the cosmos than ever before.”

The final round of the Break the Ice competition featured six finalist teams who succeeded in an earlier phase of the challenge. The competition took place at the Alabama A&M Agribition Center in Huntsville on June 11 and 12, where each team put their diverse solutions to the test in a series of trials, using terrestrial resources like gravity-offloading cranes, concrete slabs, and a rocky track with tricky obstacles to mimic the environment on the Moon.

The husband-and-wife duo of Terra Engineering took home the top prize for their “Fracture” rover. Team lead Todd Mendenhall competed in NASA’s 2007 Regolith Excavation Challenge, facilitated through NASA’s Centennial Challenges, which led him and Valerie Mendenhall to continue the pursuit of solutions for autonomous lunar excavation.

A small space hardware business, Starpath Robotics, earned the second-place prize for its four-wheeled rover that can mine, collect, and haul material. The team, led by Saurav Shroff and lead engineer Mihir Gondhalekar, developed a robotic mining tool that features a drum barrel scraping mechanism for breaking into the tough lunar surface. This allows the robot to mine material quickly and robustly without sacrificing energy.

“This challenge has been pivotal in advancing the technologies we need to achieve a sustained human presence on the Moon,” said Kim Krome, the Acting Program Manager for NASA’s Centennial Challenges. “Terra Engineering’s rover, especially, bridged several of the technology gaps that we identified – for instance, being robust and resilient enough to traverse rocky landscapes and survive the harsh conditions of the lunar South Pole.”

breaktheicerunnerup.jpg?w=2048
Starpath Robotics earned the second place prize for its four-wheeled rover that can mine, collect, and haul material during the final phase of NASA’s Break the Ice Lunar Challenge. From left, Matt Kruszynski, Saurav Shroff, Matt Khudari, Alan Hsu, David Aden, Mihir Gondhalekarl, Joshua Huang, and Aakash Ramachandran.
NASA/Jonathan Deal

Beyond the $1.5 million in prize funds, three teams will be given the chance to use Marshall Space Flight Center’s thermal vacuum (TVAC) chambers to continue testing and developing their robots. These chambers use thermal vacuum technologies to create a simulated lunar environment, allowing scientists and researchers to build, test, and approve hardware for flight-ready use.

The following teams performed exceptionally well in the excavation portion of the final competition, earning these invitations to the TVAC facilities:

  • Terra Engineering (Gardena, California)
  • Starpath Robotics (Hawthorne, California)
  • Michigan Technological University – Planetary Surface Technology Development Lab (Houghton, Michigan)

“We’re looking forward to hosting three of our finalists at our thermal vacuum chamber, where they will get full access to continue testing and developing their technologies in our state-of-the-art facilities,” said Break the Ice Challenge Manager Naveen Vetcha, who supports NASA’s Centennial Challenges through Jacobs Space Exploration Group. “Hopefully, these tests will allow the teams to take their solutions to the next level and open the door for opportunities for years to come.”

NASA’s Break the Ice Lunar Challenge is a NASA Centennial Challenge led by the agency’s Marshall Space Flight Center, with support from NASA’s Kennedy Space Center. Centennial Challenges are part of the Prizes, Challenges, and Crowdsourcing program under NASA’s Space Technology Mission Directorate. Ensemble Consultancy supports challenge competitors. Alabama A&M University, in coordination with NASA, supports the final competitions and winner event for the challenge.

Bullard, a Manufacturing Technical Solutions Inc. employee, supports the Marshall Office of Communications.

› Back to Top

NASA Announces Winners of 2024 Student Launch Competition

Over 1,000 students from across the U.S. and Puerto Rico launched high-powered, amateur rockets on April 13, just north of NASA’s Marshall Space Flight Center, as part of the agency’s annual Student Launch competition.

Teams of middle school, high school, college, and university students were tasked to design, build, and launch a rocket and scientific payload to an altitude between 4,000 and 6,000 feet, while making a successful landing and executing a scientific or engineering payload mission.

sl24.jpg?w=2048
High school and collegiate student teams gathered just north of NASA’s Marshall Space Flight Center to participate in the agency’s annual Student Launch competition April 13.
Credits: NASA/Charles Beason

“These bright students rise to a nine-month challenge that tests their skills in engineering, design, and teamwork,” said Kevin McGhaw, director of NASA’s Office of STEM Engagement Southeast Region. “They are the Artemis Generation, the future scientists, engineers, and innovators who will lead us into the future of space exploration.”

NASA announced the University of Notre Dame is the overall winner of the agency’s 2024 Student Launch challenge, followed by Iowa State University, and the University of North Carolina at Charlotte. A complete list challenge winners can be found on the agency’s student launch web page. NASA presented the 2024 Student Launch challenge award winners in a virtual award ceremony June 7.

Each year NASA implements a new payload challenge to reflect relevant missions. This year’s payload challenge is inspired by the Artemis missions, which seek to land the first woman and first person of color on the Moon.

The complete list of award winners are as follows:

2024 Overall Winners

  • First place: University of Notre Dame, Indiana
  • Second place: Iowa State University, Ames
  • Third place: University of North Carolina at Charlotte

3D Printing Award:

College Level:

  • First place: University of Tennessee Chattanooga

Middle/High School Level:

  • First place: First Baptist Church of Manchester, Manchester, Connecticut

Altitude Award

College Level:

  • First place: Iowa State University, Ames

Middle/High School Level:

  • First place: Morris County 4-H, Califon, New Jersey

Best-Looking Rocket Award:

College Level:

  • First place: New York University, Brooklyn, New York

Middle/High School Level:

  • First place: Notre Dame Academy High School, Los Angeles

American Institute of Aeronautics and Astronautics Reusable Launch Vehicle Innovative Payload Award:

College Level:

  • First place: University of Colorado Boulder
  • Second place: Vanderbilt University, Nashville, Tennessee
  • Third place: Carnegie Mellon, Pittsburgh, Pennsylvania

Judge’s Choice Award:

Middle/High School Level:

  • First place: Cedar Falls High School, Cedar Falls, Iowa
  • Second place: Young Engineers in Action, LaPalma, California
  • Third place: First Baptist Church of Manchester, Manchester, Connecticut

Project Review Award:

College Level:

  • First place: University of Florida, Gainesville

AIAA Reusable Launch Vehicle Award:

College Level:

  • First place: University of Florida, Gainesville
  • Second place: University of North Carolina at Charlotte
  • Third place: University of Notre Dame, Indiana

AIAA Rookie Award:

College Level:

  • First place: University of Colorado Boulder

Safety Award:

College Level:

  • First place: University of Notre Dame, Indiana
  • Second place: University of Florida, Gainesville
  • Third place: University of North Carolina at Charlotte

Social Media Award:

College Level:

  • First place: University of Colorado Boulder

Middle/High School Level:

  • First place: Newark Memorial High School, Newark, California

STEM Engagement Award:

College Level:

  • First place: University of Notre Dame, Indiana
  • Second place: University of North Carolina at Charlotte
  • Third place: New York University, Brooklyn, New York

Middle/High School Level:

  • First place: Notre Dame Academy High School, Los Angeles, California
  • Second place: Cedar Falls High School, Cedar Falls, Iowa
  • Third place: Thomas Jefferson High School for Science and Technology, Alexandria, Virginia

Service Academy Award:

First place: United States Air Force Academy, USAF Academy, Colorado

Vehicle Design Award:

Middle/High School Level:

  • First place: First Baptist Church of Manchester, Manchester, Connecticut
  • Second place: Explorer Post 1010, Rockville, Maryland
  • Third place: Plantation High School, Plantation, Florida

Payload Design Award:

Middle/High School Level:

  • First place: Young Engineers in Action, LaPalma, California
  • Second place: Cedar Falls High School, Cedar Falls, Iowa
  • Third place: Spring Grove Area High School, Spring Grove, Pennsylvania

Student Launch is one of NASA’s nine Artemis Student Challenges, activities which connect student ingenuity with NASA’s work returning to the Moon under Artemis in preparation for human exploration of Mars.

The competition is managed by Marshall’s Office of STEM Engagement (OSTEM). Additional funding and support are provided by NASA’s OSTEM via the Next Gen STEM project, NASA’s Space Operations Mission Directorate, Northrup Grumman, National Space Club Huntsville, American Institute of Aeronautics and Astronautics, National Association of Rocketry, Relativity Space, and Bastion Technologies.

› Back to Top

Keith Savoy Named Deputy Director at Michoud Assembly Facility

Keith Savoy has been named deputy director of NASA’s Michoud Assembly Facility, effective June 16.

Savoy will assist in managing the day-to-day operations of one of the world’s largest manufacturing facilities, where key elements of NASA’s Space Launch System (SLS), and Orion spacecraft are built. Michoud, a multi-tenant manufacturing site sitting on 829 acres with over 2 million square feet of manufacturing space, is managed by NASA’s Marshall Space Flight Center and provides facility infrastructure and capacity for federal, state, academic, and technology-based industry partners.

Keith Savoy
Keith Savoy has been named deputy director of NASA’s Michoud Assembly Facility.
NASA

Savoy was the chief operating officer of Michoud Assembly Facility from 2022-2024, where he oversaw the day-to-day administrative and operational functions of the NASA-owned facility, helping sustain SLS and Orion production efforts and coordinating requirements and logistics with Michoud tenant leadership for approximately 3,500 Michoud employees.

He previously served as manager of the Office of Center Operations of Michoud from 2016-2022. His responsibilities included managing the facility’s planning, maintenance, design, construction, and engineering. Savoy also oversaw energy and water conservation, environmental permitting and compliance, industrial hygiene, and medical, security, and logistics services, where he was responsible for managing over $350 million of supplemental funding projects sitewide.

Savoy also held the position of lead engineer, Logistics and Operation Planning for NASA from 2007-2016 at Michoud as an expert consultant for all engineering aspects of the facility. He managed multi-phase projects and helped advance aerospace manufacturing at Michoud to meet the complex requirements of SLS and Orion multi-purpose crew vehicle programs, ensuring environmental compliance. Savoy worked closely with local, state, and federal environmental regulatory agencies to identify and resolve engineering and environmental issues. His expertise was a key contributor to ensuring NASA’s sustainable and environmental goals were achieved.

Prior to working for NASA, Savoy held several positions of increasing responsibility with Lockheed Martin from 1988-2007. As manager of Operational Planning and Layout, he was responsible for managing the Construction of Facilities. This required developing and implementing plans, outlining scope-of-work, overseeing large-scale project budgets, and Project Definition Rating assessment/score and 1509 development. Savoy implemented Six Sigma & Lean principles concepts to achieve many successes and identified innovative solutions and best practices to satisfy customer requirements. Savoy was also the manager of the Infrastructure Enhancement Team where he managed over 160 personnel and a $10 million budget.

Savoy has a Master of Science in environmental management from National Technological University in Fort Collins, Colorado, a bachelor of science in electrical engineering from the University of Louisiana-Lafayette, and a technical degree in industrial instrumentation from International Technical Institute in Baton Rouge, Louisiana.

Throughout his career, Savoy has received various awards including the NASA Honor Award Outstanding Leadership Medal, Director’s Commendation Honor Award, Safety Flight Awareness Awards, and several Silver Medal Group Achievement Awards.

› Back to Top

‘NASA in the Park’ Returns to Rocket City June 22

NASA in the Park is coming back to Big Spring Park East in Huntsville, Alabama, on June 22, from 10 a.m. to 2 p.m. CDT. The event is free and open to the public.

A blue background has NASA in the Park on it with Orange and White letters. The SLS Rocket graphic and stars appear as well.

NASA’s Marshall Space Flight Center, its partners, and collaborators will fill the park with space exhibits, music, food vendors, and hands-on activities for all ages. Marshall is teaming up with Downtown Huntsville Inc. for this unique celebration of space and the Rocket City.

“NASA in the Park gives us the opportunity to bring our work outside the gates of Redstone Arsenal and thank the community for their continuing support,” Marshall Director Joseph Pelfrey said. “It’s the first time we’ve held the event since 2018, and we look forward to sharing this experience with everyone.”

Pelfrey will kick the event off with local leaders on the main stage. NASA speakers will spotlight topics ranging from space habitats to solar sails, and local rock band Five by Five will perform throughout the day.

“NASA Marshall is leading the way in this new era of space exploration, for the benefit of all humankind,” Pelfrey said. “We are proud members of the Rocket City community, which has helped us push the boundaries of science, technology, and engineering for nearly 65 years.”

› Back to Top

Mission Success is in Our Hands: Baraka Truss

By Wayne Smith

Mission Success is in Our Hands is a safety initiative collaboration between NASA’s Marshall Space Flight Center and Jacobs. As part of the initiative, eight Marshall team members are featured in testimonial banners placed around the center. This is the last in a Marshall Star series profiling team members featured in the testimonial banners. The Mission Success team also awards the Golden Eagle Award on a quarterly basis to Marshall and contractor personnel who are nominated by their peers or management. Candidates for this award have made significant, identifiable contributions that exceed normal job expectations to advance flight safety and mission assurance. Nominations for 2024 are open now online on Inside Marshall.

Baraka Truss is the Avionics and Software Branch chief at NASA’s Marshall Space Flight Center.
Baraka Truss is the Avionics and Software Branch chief at NASA’s Marshall Space Flight Center.
NASA/Charles Beason

Baraka Truss is the Avionics and Software Branch chief in the Safety and Mission Assurance Organization, Vehicle Systems Department, at NASA’s Marshall Space Flight Center. Her key responsibilities include being viewed as a leadership role model, “demonstrating commitment to the mission and NASA’s core values, creating the most impact for the greater agency, and engaging in activities that promote supervisory excellence and value beyond the immediate organization.”

Truss has worked at Marshall for 28 years. Her previous roles have been software engineer, Software Engineering Process Group lead, special assistant to the center director, Independent Assessment Team lead, Software Quality Discipline lead engineer, Software Assurance Team lead, and     SLS (Space Launch System) Software chief safety officer.

A native of Montgomery, Alabama, Truss earned a bachelor’s and master’s degree in computer science from Alabama A&M University in Huntsville.

Question: How does your work support the safety and success of NASA and Marshall missions?

Truss: My work involves daily managing and interactions with the avionics and software team members whose mission is to ensure the safety of hardware and software for various programs and projects at Marshall and NASA.

Question: What does the initiative campaign “Mission Success is in Our Hands” mean to you?

Truss: That when risks arise, we should be sure to listen to all sides and make informed decisions, be held accountable, and speak up for what is safe when we need to do so.

Question: Do you have a story or personal experience you can share that might help others understand the significance of mission assurance or flight safety? What did you learn from it?

Truss: In my experience, mission assurance requires you to “believe the unlikely.” I have learned that believing what you have never seen requires you to stretch your imagination, because we are prone to discount and devalue things that we have not seen. We are skeptical about things that have never been seen, never been done, never been achieved, or never been accomplished.

Because according to our limited logic if it’s never been seen, never been done, never been achieved, or never been accomplished, then it’s not likely to be seen, not likely to be done, not likely to be achieved, and not likely to be accomplished. Therefore, we see no need to attempt it, try it, believe it, or invest in it because while we’ll acknowledge that it’s possible, we quickly add it’s not probable, because our idea of likelihood is limited by our experience. My experiences working for NASA have stretched me to an amazing place of accountability, assurance, and mission success.

Question: How can we work together better to achieve mission success?

Truss: Again, by listening to all sides and making informed decisions, being held accountable, and speaking up for what is safe when we need to do so.

Smith, a Media Fusion employee and the Marshall Star editor, supports the Marshall Office of Communications.

› Back to Top

That’s the Spirit: Marshall Team Members Show Support at Community Softball Game

NASA shows its team spirit during the Armed Forces Celebration Community Softball Game on June 12 at Toyota Field. Marshall Space Flight Center’s Robert Champion and Jason Adam joined Team Redstone to take on the North Alabama Rockets, made up of community leaders.

NASA shows its team spirit during the Armed Forces Celebration Community Softball Game on June 12 at Toyota Field. Marshall Space Flight Center’s Robert Champion and Jason Adam joined Team Redstone to take on the North Alabama Rockets, made up of community leaders. (Huntsville Sports Commission)

› Back to Top

Coming in Hot: NASA’s Chandra Checks Habitability of Exoplanets

This graphic shows a three-dimensional map of stars near the Sun. These stars are close enough that they could be prime targets for direct imaging searches for planets using future telescopes. The blue haloes represent stars that have been observed with NASA’s Chandra X-ray Observatory and ESA’s XMM-Newton. The yellow star at the center of this diagram represents the position of the Sun. The concentric rings show distances of 5, 10, and 15 parsecs (one parsec is equivalent to roughly 3.2 light-years).

Astronomers are using these X-ray data to determine how habitable exoplanets may be based on whether they receive lethal radiation from the stars they orbit, as described in a press release. This type of research will help guide observations with the next generation of telescopes aiming to make the first images of planets like Earth.

This video shows a three-dimensional map of stars near the Sun on the left side of the screen and a dramatic illustration of a star with a planet orbiting around it on the right side.
Movie: Cal Poly Pomona/B. Binder; Illustration: NASA/CXC/M.Weiss

Researchers examined stars that are close enough to Earth that telescopes set to begin operating in the next decade or two – including the Habitable Worlds Observatory in space and Extremely Large Telescopes on the ground – could take images of planets in the stars’ so-called habitable zones. This term defines orbits where the planets could have liquid water on their surfaces.

There are several factors influencing what could make a planet suitable for life as we know it. One of those factors is the amount of harmful X-rays and ultraviolet light they receive, which can damage or even strip away the planet’s atmosphere.

Based on X-ray observations of some of these stars using data from Chandra and XMM-Newton, the research team examined which stars could have hospitable conditions on orbiting planets for life to form and prosper. They studied how bright the stars are in X-rays, how energetic the X-rays are, and how much and how quickly they change in X-ray output, for example, due to flares. Brighter and more energetic X-rays can cause more damage to the atmospheres of orbiting planets.

The researchers used almost 10 days of Chandra observations and about 26 days of XMM observations, available in archives, to examine the X-ray behavior of 57 nearby stars, some of them with known planets. Most of these are giant planets like Jupiter, Saturn or Neptune, while only a handful of planets or planet candidates could be less than about twice as massive as Earth.

These results were presented at the 244th meeting of the American Astronomical Society meeting in Madison, Wisconsin, by Breanna Binder (California State Polytechnic University in Pomona).

NASA’s Marshall Space Flight Center manages the Chandra program. The Smithsonian Astrophysical Observatory’s Chandra X-ray Center controls science from Cambridge, Massachusetts and flight operations from Burlington, Massachusetts.

› Back to Top

NASA Announces New System to Aid Disaster Response

In early May, widespread flooding and landslides occurred in the Brazilian state of Rio Grande do Sul, leaving thousands of people without food, water, or electricity. In the following days, NASA teams provided data and imagery to help on-the-ground responders understand the disaster’s impacts and deploy aid.

Building on this response and similar successes, on June 13, NASA announced a new system to support disaster response organizations in the U.S. and around the world.

people in search-and-rescue attire stand among rubble
Members of the Los Angeles County Fire Department’s Urban Search and Rescue team in Adiyaman, Turkey, conducting rescue efforts in the wake of powerful earthquakes that struck the region in February 2023. NASA provided maps and data to support USAID and other regional partners during these earthquakes.
USAID

“When disasters strike, NASA is here to help – at home and around the world,” said NASA Administrator Bill Nelson. “As challenges from extreme weather grow, so too does the value of NASA’s efforts to provide critical Earth observing data to disaster-response teams on the frontlines. We’ve done so for years. Now, through this system, we expand our capability to help power our U.S. government partners, international partners, and relief organizations across the globe as they take on disasters – and save lives.”

The team behind NASA’s Disaster Response Coordination System gathers science, technology, data, and expertise from across the agency and provides it to emergency managers. The new system will be able to provide up-to-date information on fires, earthquakes, landslides, floods, tornadoes, hurricanes, and other extreme events.

“The risk from climate-related hazards is increasing, making more people vulnerable to extreme events,” said Karen St. Germain, director of NASA’s Earth Science Division. “This is particularly true for the 10% of the global population living in low-lying coastal regions who are vulnerable to storm surges, waves and tsunamis, and rapid erosion. NASA’s disaster system is designed to deliver trusted, actionable Earth science in ways and means that can be used immediately, to enable effective response to disasters and ultimately help save lives.”

Agencies working with NASA include the Federal Emergency Management Agency, the National Oceanic and Atmospheric Administration (NOAA), the U.S. Geological Survey, and the U.S. Agency for International Development – as well as international organizations such as World Central Kitchen.

“With this deliberate and structured approach, we can be even more effective in putting Earth science into action,” said Josh Barnes, at NASA’s Langley Research Center. Barnes manages the Disaster Response Coordination System.

NASA Administrator Bill Nelson delivers remarks June 13 during an event launching a new Disaster Response Coordination System that will provide communities and organizations around the world with access to science and data to aid disaster response.
NASA Administrator Bill Nelson delivers remarks June 13 during an event launching a new Disaster Response Coordination System that will provide communities and organizations around the world with access to science and data to aid disaster response.
NASA/Bill Ingalls

NASA Disasters Team Aiding Brazil

When the floods and landslides ravaged parts of Brazil in May, officials from the U.S. Southern Command – working with the U.S. Space Force and Air Force, and regional partners – reached out to NASA for Earth-observing data.

NASA’s response included maps of potential power outages from the Black Marble project at NASA’s Goddard Space Flight Center. Disaster response coordinators at NASA Goddard also reviewed high-resolution optical data – from the Commercial Smallsat Data Acquisition Program – to map more than 4,000 landslides.

Response coordinators from NASA’s Jet Propulsion Laboratory and the California Institute of Technology produced flood extent maps using data from the NASA and U.S. Geological Survey Landsat mission and from ESA’s (the European Space Agency) Copernicus Sentinel-2 satellite. Response coordinators at NASA’s Johnson Space Center also provided photographs of the flooding taken by astronauts aboard the International Space Station.

Building on Previous Work

The Brazil event is just one of hundreds of responses NASA has supported over the past decade. The team aids decision-making for a wide range of natural hazards and disasters, from hurricanes and earthquakes to tsunamis and oil spills

“NASA’s Disasters Program advances science for disaster resilience and develops accessible resources to help communities around the world make informed decisions for disaster planning,” said Shanna McClain, manager of NASA’s Disasters Program. “The new Disaster Response Coordination System significantly expands our efforts to bring the power of Earth science when responding to disasters.”

› Back to Top

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Explore This Section Science Uncategorized Helio Highlights: June… Home Framework for Heliophysics Education About Helio Big Idea 1.1 Helio Big Idea 1.2 Helio Big Idea 1.3 Helio Big Idea 2.1 Helio Big Idea 2.2 Helio Big Idea 2.3 Helio Big Idea 3.1 Helio Big Idea 3.2 Helio Big Idea 3.3 Helio Missions Helio Topics Resource Database About NASA HEAT More Highlights Space Math   4 min read
      Helio Highlights: June 2025
      4 Min Read Helio Highlights: June 2025
      An artist’s interpretation of the Parker Solar Probe flying through the corona. Credits:
      NASA Two Stars in Solar Science
      It takes a lot of work to make space missions happen. Hundreds or even thousands of experts work as a team to put together the spacecraft. Then it has to be tested in conditions similar to space, to be sure that it can survive out there once it is launched. Fixing big issues that pop up after launch is either impossible or very difficult, so it is important that everything works before the mission gets to space.
      The Parker Solar Probe and Solar Orbiter missions study the Sun from different points of view. Parker is led by NASA and was built to fly into the upper atmosphere of the Sun, called the corona. Solar Orbiter is led by the European Space Agency (ESA) and has gotten our first peek at the Sun’s poles. Together, they both provide a deeper understanding of the Sun and how it affects the rest of the solar system.
      A New Way of Seeing
      It takes a lot of teamwork to build and launch any space mission, and Solar Orbiter was no different. It also had to go through a lot of testing in conditions similar to outer space before it made its final journey to the launch site.
      The Solar Orbiter mission has taken the highest-ever-resolution images of the Sun and recently sent back the first ever close-up images of the Sun’s poles. It has also studied the solar wind to see what it is made of and helped scientists find out where on the Sun the solar wind comes from. Working hand-in-hand with Parker, it has also shown how the solar wind gets a magnetic “push” that increases its total speed.
      An infographic showing the ten scientific instruments carried aboard Solar Orbiter European Space Agency To get all of this done, the spacecraft carries ten different scientific instruments on its voyage around the Sun. These instruments work together to provide a total overview of our star. Six of them are remote-sensing instruments (above in gold), which “see” the Sun and return imagery to Earth. The other four are what’s called in-situ instruments (above in pink), which measure the environment all  around the spacecraft. This includes the solar wind, and the electric and magnetic fields embedded within it.
      Faster and Closer Than Ever Before
      The Parker Solar Probe was named for Dr. Eugene N. Parker, who pioneered our modern understanding of the Sun. In the mid-1950s, Parker developed a theory that predicted the solar wind. The probe named after him is designed to swoop within 4 million miles (6.5 million kilometers) of the Sun’s surface to trace its energy flow, to study the heating of the corona, and to explore what accelerates the solar wind.
      To get all this done, the probe has to survive the blazing hot corona. It can get up to about 2 million °F (1.1 million °C)!  Parker uses high-tech thermal engineering to protect itself, including an eight-foot diameter heat shield called the Thermal Protection System (TPS). The TPS is made of two panels of carbon composite with a lightweight 4.5-inch-thick carbon foam core. This heat shield sandwich keeps things about 85 °F (29 °C) in its shadow, even though the Sun-facing side reaches about 2,500 °F (1,377 °C)!
      In 2018, the Parker Solar Probe became the fastest spacecraft ever built, at about 430,000 miles per hour (700,000 kilometers per hour). It also got seven times closer to the Sun than any other spacecraft, getting within 3.8 million miles (6.2 million kilometers). It made this record-breaking close encounter on Christmas Eve of 2024.
      From Yesterday to Tomorrow
      The Parker Solar Probe was launched on August 12, 2018, and Solar Orbiter was launched on February 10, 2020. Both of them took off from Cape Canaveral Air Station in Florida. Some pieces of Solar Orbiter were transported in trucks, but the completed spacecraft made the journey from Europe to the U.S. on a gigantic Antonov cargo plane designed especially for transporting spacecraft.
      Together, these spacecraft have done a lot to improve our knowledge of the Sun. Both missions are currently in their main operational phase, with projected end-of-mission sometime in 2026, and could continue returning data for a few years to come.
      Here are more resources about these missions
      Lesson Plans & Educator Guides
      NASA Helio Club
      Lesson Plan
      A collection of six lessons created for a middle-school audience that introduce basic heliophysics concepts.


      Interactive Resources
      Build A Model Solar
      Probe Activity
      A hands-on guide showing students how to construct a homemade model of the Parker Solar Probe.


      Webinars & Slide Decks
      Parker’s Perihelion
      The Parker Solar Probe mission is the first spacecraft to “touch” the Sun, and made its closest approach in late 2024.


      How will Parker Solar Probe study the Sun?
      A slide deck with resources explaining how the Parker Solar Probe can study the Sun and survive.


      Exploring the Sun with Solar Orbiter Video
      A video conversation about the Solar Orbiter mission with NASA scientist Dr. Teresa Nieves-Chinchilla.


      View the full article
    • By European Space Agency
      Image: This image tells the story of redemption for one lonely star. The young star MP Mus (PDS 66) was thought to be all alone in the Universe, surrounded by nothing but a featureless band of gas and dust called a protoplanetary disc. In most cases, the material inside a protoplanetary disc condenses to form new planets around the star, leaving large gaps where the gas and dust used to be. These features are seen in almost every disc – but not in MP Mus’s.
      When astronomers first observed it with the Atacama Large Millimeter/submillimeter Array (ALMA), they saw a smooth, planet-free disc, shown here in the right image. The team, led by Álvaro Ribas, an astronomer at the University of Cambridge, UK, gave this star another chance and re-observed it with ALMA at longer wavelengths that peer even deeper into the protoplanetary disc than before. These new observations, shown in the left image, revealed a gap and a ring that had been obscured in previous observations, suggesting that MP Mus might have company after all.
      Meanwhile, another piece of the puzzle was being revealed in Germany as Miguel Vioque, an astronomer at the European Southern Observatory, studied this same star with the European Space Agency’s (ESA’s) Gaia mission. Vioque noticed something suspicious – the star was wobbling. A bit of gravitational detective work, together with insights from the new disc structures revealed by ALMA, showed that this motion could be explained by the presence of a gas giant exoplanet. 
      Both teams presented their joint results in a new paper published in Nature Astronomy. In what they describe as “a beautiful merging of two groups approaching the same object from different angles”, they show that MP Mus isn’t so boring after all.
      [Image description: This is an observation from the ALMA telescope, showing two versions (side-by-side) of a protoplanetary disc. Both discs are bright, glowing yellow-orange objects with a diffused halo against a dark background. The right disc is more smooth and blurry looking. The left disc shows more detail, for example gaps and rings within it.]
      Source: ESO
      View the full article
    • By European Space Agency
      Week in images: 30 June - 4 July 2025
      Discover our week through the lens
      View the full article
    • By NASA
      Artist’s concept of the star HIP 67522 with a flare erupting toward an orbiting planet, HIP 67522 b. A second planet, HIP 67522 c, is shown in the background. Janine Fohlmeister, Leibniz Institute for Astrophysics Potsdam The Discovery
      A giant planet some 400 light-years away, HIP 67522 b, orbits its parent star so tightly that it appears to cause frequent flares from the star’s surface, heating and inflating the planet’s atmosphere.
      Key Facts
      On planet Earth, “space weather” caused by solar flares might disrupt radio communications, or even damage satellites. But Earth’s atmosphere protects us from truly harmful effects, and we orbit the Sun at a respectable distance, out of reach of the flares themselves.
      Not so for planet HIP 67522 b. A gas giant in a young star system – just 17 million years old – the planet takes only seven days to complete one orbit around its star. A “year,” in other words, lasts barely as long as a week on Earth. That places the planet perilously close to the star. Worse, the star is of a type known to flare – especially in their youth.
      In this case, the proximity of the planet appears to result in fairly frequent flaring.
      Details
      The star and the planet form a powerful but likely a destructive bond. In a manner not yet fully understood, the planet hooks into the star’s magnetic field, triggering flares on the star’s surface; the flares whiplash energy back to the planet. Combined with other high-energy radiation from the star, the flare-induced heating appears to have increased the already steep inflation of the planet’s atmosphere, giving HIP 67522 b a diameter comparable to our own planet Jupiter despite having just 5% of Jupiter’s mass.
      This might well mean that the planet won’t stay in the Jupiter size-range for long. One effect of being continually pummeled with intense radiation could be a loss of atmosphere over time. In another 100 million years, that could shrink the planet to the status of a “hot Neptune,” or, with a more radical loss of atmosphere, even a “sub-Neptune,” a planet type smaller than Neptune that is common in our galaxy but lacking in our solar system.
      Fun Facts
      Four hundred light-years is much too far away to capture images of stellar flares striking orbiting planets. So how did a science team led by Netherlands astronomer Ekaterina Ilin discover this was happening? They used space-borne telescopes, NASA’s TESS (Transiting Exoplanet Survey Satellite) and the European Space Agency’s CHEOPS (CHaracterising ExoPlanets Telescope), to track flares on the star, and also to trace the path of the planet’s orbit.
      Both telescopes use the “transit” method to determine the diameter of a planet and the time it takes to orbit its star. The transit is a kind of mini-eclipse. As the planet crosses the star’s face, it causes a tiny dip in starlight reaching the telescope. But the same observation method also picks up sudden stabs of brightness from the star – the stellar flares. Combining these observations over five years’ time and applying rigorous statistical analysis, the science team revealed that the planet is zapped with six times more flares than it would be without that magnetic connection.   
      The Discoverers
      A team of scientists from the Netherlands, Germany, Sweden, and Switzerland, led by Ekaterina Ilin of the Netherlands Institute for Radio Astronomy, published their paper on the planet-star connection, “Close-in planet induces flares on its host star,” in the journal Nature on July 2, 2025.
      Keep Exploring Discover More Topics From NASA
      Search for Life



      Stars



      Galaxies



      Black Holes


      Explore This Section Exoplanets Home Exoplanets Overview Exoplanets Facts Types of Exoplanets Stars What is the Universe Search for Life The Big Questions Are We Alone? Can We Find Life? The Habitable Zone Why We Search Target Star Catalog Discoveries Discoveries Dashboard How We Find and Characterize Missions People Exoplanet Catalog Immersive The Exoplaneteers Exoplanet Travel Bureau 5 Ways to Find a Planet Strange New Worlds Universe of Monsters Galaxy of Horrors News Stories Blog Resources Get Involved Glossary Eyes on Exoplanets Exoplanet Watch More Multimedia ExEP View the full article
    • By European Space Agency
      Week in images: 23-27 June 2025
      Discover our week through the lens
      View the full article
  • Check out these Videos

×
×
  • Create New...