Jump to content

Recommended Posts

  • Publishers
Posted

6 min read

Sols 4219-4221: It’s a Complex Morning…

There are many whiteish rocks in the area that lately attracted the team’s special interest, as this image, taken by Right Navigation Camera onboard NASA's Mars rover Curiosity on Sol 4217 (2024-06-17 02:10:34 UTC) shows.
There are many whiteish rocks in the area that lately attracted the team’s special interest, as this image, taken by Right Navigation Camera onboard NASA’s Mars rover Curiosity on Sol 4217 (2024-06-17 02:10:34 UTC) shows.
NASA/JPL-Caltech

Earth planning date: Monday, June 17, 2024

Who thought it was a good idea to select a name with the word ‘mammoth’ in it? Well, we don’t remember who did it, and if we did, we wouldn’t say anyways… but these rocks take ‘Mammoth Lakes’ and seem to translate it into ‘Mammoth Effort’ for the team here on Earth! You may have seen my colleague Conor’s blog about ‘The best laid plans’, and today we tried again.

For a start, orbital mechanics wasn’t our friend on this nervous Monday morning: the data we needed reached us – as scheduled – in the early morning hours; hence assessment could only begin shortly before the normal start of the planning day. The assessment of a preload test is not a quick task as it concerns rover health and safety. Even with over 11 years of experience, engineers want to look very, very closely. Or shall I say, tongue in cheek, after over 11 years of experience we want to look even closer as we have seen many of the ways Mars rocks can play tricks on us and we are pretty sure that the rocks have even more surprises up their sleeves! We don’t want to get caught out by… a rock!

With that assessment still ongoing (can you feel the nerves?!), the team had to start planning assuming we would go ahead with the drill. I was Geo Science Theme Lead today, and it was my task to help navigate through the things that we would want to do, if we pass the preload assessment and are going to drill. And it was also agreed that if this isn’t going to work today, we would try another preload test. The science team really wants to see what these bright rocks are made of, as bright, almost white colour on a basaltic planet always means that it is different and interesting.. Water rock interactions are my favourite possible explanation, but I don’t want to speculate, I prefer to interpret data… but those would come after the drill! Cliffhanger, part one, we kept asking those with an ear close to the engineering rooms for updates, but the only updates were that there are no updates… yet. I am not good at waiting, are you?

We were planning four sols today, but one of them is a ‘soliday’  – a day on Earth with no corresponding sol on Mars. They come up occasionally to re-synchronise Earth and Mars timings (and to not make downlinks even closer to start of planning). This is because an Earth day is 24 hours long, but a Mars day is 24 hours, 39 minutes, 35 seconds long. Therefore, Mars and Earth days get slowly but surely out of sync and planning would have to happen in the middle of the Earth night. Therefore, Curiosity gets a break thanks to orbital mechanics (and human sleep patterns).  But just before Curiosity gets a break (and the humans, too, for Juneteenth), there is a lot of work to do, even with this cliffhanger still ongoing.

The plan started – optimistically, and yes, with the cliffhanger STILL ongoing – with the full drill and everything we always do to assess whether the drill is successful. This includes an image of the newly accomplished (hopefully, are you keeping your fingers crossed?!) drill hole, an image of the drill bit inspecting our tools, and a ChemCem Remote Micro Imager mosaic of the drill hole.  ChemCam also does a passive spectral investigation of the drill tailings (are you still holding your breath that we even get to uplink the commands?!). Most of the drill activities happen on sol 4219, and just the ChemCam activities happen in sol 4220. Also, on sol 4220 ChemCam investigates the target “Longley Pass,” which is also a whitish rock.

Well, if these rocks play tricks on us and make us wait this long for an answer, we can at least shoot them with a laser and get some more data this way. Mastcam documents the ChemCam target Longley Pass and does two more single frame images of the targets “Walker Lake2” and “Finch Lake,” both of which you will have seen in previous blogs. They are part of a change detection campaign, where we repeatedly image the same location to find out if the sand moves. This helps with assessing the current winds on Mars. But that’s just the warm up for Mastcam, which will then embark on a 334 image journey 360° around the rover, also known as a 360-panorama. Given the very exciting landscape, we are all very much looking forward to getting to see this! But before that, the question is still there: will we get the go for drilling?! It’s one and a half hours into planning, and we still don’t know.

Finally on sol 4221 there is more ChemCam laser activity, this time on the target Quarry Peak, and there is a long-distance mosaic by ChemCam, too, to further document all the different sedimentary structures around us. Last but not least, our part of the plan had some ‘homework’ in form of a ChemCam calibration activity. There is more, of course, as the environmental group looks at dust devils and the opacity of the atmosphere and the DAN instrument performs its routine cadence of measurements. It’s a fully packed plan!

And the cliffhanger? Well, not so fast… after the initial planning meeting everyone who has assembled parts of the plan will meet in the so-called Science Operations Working Group meeting. I was really hoping for a result then, but we were told we had to wait just a little longer. Mars doesn’t make things easy, and we fully trust the engineers to make the right call. But will that call be the one the scientist in me wants? Will we drill?

We got through all of this meeting and about an hour later had a fully integrated plan, and still no word from the engineers. Come on, Mars, do you have to make it this hard?!

Planning rarely gets this tight and nerve wracking to be honest. But then, when Mars decides to write the script, we can either decide that we forego the measurement… or that we try again. And try again was what we were after.

Almost two hours of planning done, time for a break in the planning meeting cadence and dinner in my part of the world, but I wasn’t really hungry, to be honest. I just wanted to hear the outcome.

And finally, 3 hours and 38 minutes after the start of planning,  “GO GO GO” accompanied by a smiley with a wide grin appeared in the chat, straight from Ashwin, the project scientist.

And breathe… Let’s hope Mars rewards our brilliant engineers’ efforts!

Written by Susanne Schwenzer, Planetary Geologist at The Open University

Share

Details

Last Updated
Jun 18, 2024

Related Terms

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions Mars Home 1 min read
      Sols 4539-4540: Back After a Productive Weekend Plan
      NASA’’s Mars rover Curiosity acquired this image using its Left Navigation Camera on May 11, 2025 — Sol 4537, or Martian day 4,537 of the Mars Science Laboratory mission — at 22:26:23 UTC. NASA/JPL-Caltech Written by Scott VanBommel, Planetary Scientist at Washington University
      Earth planning date: Monday, May 12, 2025
      Curiosity was back to work Monday, picking up where it left off from Friday’s plan. Tosol’s plan started with an APXS analysis on the target “Jeffrey Pine,” though the DRT was kept on the sidelines this time. Curiosity then proceeded to image Jeffrey Pine and “Canyon Oak” with MAHLI while simultaneously executing a DAN passive analysis. Mastcam documented “Santiago Peak” as well as Canyon Oak, prior to a ChemCam 5-spot analysis on the latter. Following a drive of about 30 meters (about 98 feet), Curiosity rounded out the two-sol plan with untargeted and environmental monitoring activities, including Navcam dust-devil and cloud-shadow movies. 
      Share








      Details
      Last Updated May 13, 2025 Related Terms
      Blogs Explore More
      2 min read Sols 4536-4538: Dusty Martian Magnets


      Article


      1 hour ago
      2 min read Sols 4534-4535: Last Call for the Layered Sulfates? (West of Texoli Butte, Headed West)


      Article


      4 days ago
      2 min read Sols 4532-4533: Polygon Heaven


      Article


      5 days ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions Mars Home 2 min read
      Sols 4536-4538: Dusty Martian Magnets
      NASA’s Mars rover Curiosity acquired this image, used to inspect the magnet on its MAHLI (Mars Hand Lens Imager), a camera on the turret of tools at the end of the rover’s robotic arm. The main purpose of Curiosity’s MAHLI camera is to acquire close-up, high-resolution views of rocks and regolith in the field; it can focus on any target from about 0.8 inches (2.1 centimeters) to infinity. Curiosity used its Mast Camera (Mastcam) on Sept. 1, 2024 — Sol 4291, or Martian day 4,291 of the Mars Science Laboratory mission — at 05:48:14 UTC. NASA/JPL-Caltech/MSSS Written by Remington Free, Operations Systems Engineer at NASA’s Jet Propulsion Laboratory
      Earth planning date: Friday, May 9, 2025
      I was on downlink today for SA-SPaH, our robotic arm team. We successfully completed a number of fun arm activities, including a DRT brushing and APXS observations of a bedrock target, and also completed a traverse of about 25 meters (about 82 feet). Exciting!
      Today, our uplink team planned three sols of activities. On Sol 4536, we are using the arm to do some inspection imaging of the MAHLI magnet using Mastcam. This magnet allows us to determine whether or not the MAHLI cover has successfully opened or closed. These magnets accumulate a lot of Martian dust particles, so we periodically take imaging to inspect the quantity of dust and get a better understanding of the state of the hardware. I’ve included above an image of the MAHLI instrument, from our last inspection on Sol 4291. After the magnet inspection, we’ll do some more typical arm activities, which include some APXS placements, DRT brushing, and MAHLI imaging on targets of interest. 
      In this workspace, we are interested in targets characterizing the pale layered sulfate unit we’ve been driving on, as well as a target in the new ridge-forming unit. Beyond our arm activities, we’ll do additional science observations of the surface using Mastcam and ChemCam.  
      On Sol 4537, we’ll focus on driving! Prior to our drive, we’ll take some more scientific observations, including a Navcam cloud movie, Mastcam documentation of some geological units, and ChemCam LIBS on a ridge-forming unit. We have then planned a 21-meter drive (about 69 feet) to take us to a bedrock area of scientific interest. We’re excited because the terrain looks pretty benign, so we’re hoping it all goes smoothly!
      Post-drive, we’ll take some Mastcam survey imaging of clasts and soils along the traverse. Finally on Sol 4538, we’ll aim our focus upwards and take a number of observations of the sky. We’ll start with a Navcam large dust-devil survey, a Mastcam tau measurement of the atmospheric optical depth, and a ChemCam passive sky observation to study atmospheric composition. Early the following morning, we’ll take some additional Navcam observations of clouds, and complete another Mastcam tau measurement of optical depth.
      Share








      Details
      Last Updated May 13, 2025 Related Terms
      Blogs Explore More
      2 min read Sols 4534-4535: Last Call for the Layered Sulfates? (West of Texoli Butte, Headed West)


      Article


      4 days ago
      2 min read Sols 4532-4533: Polygon Heaven


      Article


      5 days ago
      4 min read Sols 4529-4531: Honeycombs and Waffles… on Mars!


      Article


      1 week ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions Mars Home 2 min read
      Sols 4532-4533: Polygon Heaven
      NASA’s Mars rover Curiosity acquired this image, showing an example of the polygonally fractured terrain that it has been driving over, using its Right Navigation Camera. The rover captured the image on May 4, 2025 — Sol 4530, or Martian day 4,530 of the Mars Science Laboratory mission — at 18:07:04 UTC. NASA/JPL-Caltech Written by Catherine O’Connell-Cooper, Planetary Geologist at University of New Brunswick
      Earth planning date: Monday, May 5, 2025
      Our 29-meter weekend drive (about 95 feet) was successful, and we are still in the band of polygon-rich bedrock.
      The origin of these cracks is not clear — could they have formed as desiccation cracks as Mars began to get drier, billions of years ago? Or during later periods when groundwater moved through the bedrock? Spending time in this area will help us to tease out their origin by sampling as much of the diversity as we can, from regular bedrock to the stranger textured targets. Touch and Go plans allow only a few hours of science at a given workspace — in this plan, the rover turns on around 9 a.m. local time, and by 2 p.m. we have picked up and moved on to the next stop. So planning on a day like today is quite the balancing act, trying to cram in as much science, as efficiently as possible, in a small amount of time.
      On Friday, I helped plan APXS on some of the polygon features, so today we were able to concentrate on more typical bedrock without polygonal features, to compare with our last targets. We wiIl acquire a short APXS integration on the brushed target “Encinitas,” and image the target with MAHLI. In contrast, ChemCam will use LIBS to analyze “Jack Creek,” an elongated vein feature about 30 centimeters long (about 12 inches), which may be related to the polygon features. Both Mastcam and MAHLI will image this vein.  
      Beyond the workspace, but relatively closer to the rover, Mastcam will image “Loma Verde” on a small, overturned block and “Temescal Canyon,” looking at a larger expanse of bedrock with polygonal structures. Further afield, ChemCam will acquire a long-distance image at “Agua Tibia,” which is close to “Torote Bowl,” a circular feature that we have been imaging periodically since sol 4486.  
      Once all the science has been gathered here in our very busy morning, we move on in a 26-meter drive (about 85 feet). We are edging closer to the “boxwork structures” — it feels like we have been saying this in every blog for a long time, but we will have “wheels on” for the first time within the next few drives. 
      Share








      Details
      Last Updated May 08, 2025 Related Terms
      Blogs Explore More
      4 min read Sols 4529-4531: Honeycombs and Waffles… on Mars!


      Article


      2 days ago
      2 min read Searching for Spherules to Sample


      Article


      3 days ago
      2 min read Sols 4527-4528: ‘Boxwork Ahoy!’


      Article


      4 days ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
    • By European Space Agency
      The activities to assemble the European Space Agency’s Plato mission are progressing well now that 24 of the spacecraft’s 26 cameras have been installed. Once in space, Plato will use its many eyes to survey a very large area of the sky and hunt for terrestrial planets. The spacecraft’s supporting element is also coming together in parallel.
      View the full article
    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions Mars Home 4 min read
      Sols 4529-4531: Honeycombs and Waffles… on Mars!
      NASA’s Mars rover Curiosity captured this image of its current workspace, containing well-preserved polygonal shaped fractures, with waffle or honeycomb patterns. The rover acquired this image using its Front Hazard Avoidance Camera (Front Hazcam) on May 1, 2025 — Sol 4527, or Martian day 4,527 of the Mars Science Laboratory mission — at 16:41:35 UTC. NASA/JPL-Caltech Written by Catherine O’Connell-Cooper, Planetary Geologist at University of New Brunswick
      Earth planning date: Friday, May 2, 2025
      From our Wednesday stopping spot, the drive direction ahead (looking along the path we would follow in the Wednesday drive) appeared to be full of rough, gnarly material, which can be tricky targets for contact science instruments like APXS. However, coming into planning this morning, we found a workspace with amazingly well preserved polygonal shaped fractures, with raised ridges (about 1 centimeter, or about 0.39 inches, high), looking like a patchwork of honeycombs, or maybe a patch of waffles. We have spotted these before but usually not as well preserved and extensive as this — we can see these stretching away into the distance for 20-30 meters (about 66-98 feet), almost to the edge of the “boxwork” fracture structures at “Ghost Mountain” butte in this Navcam image. We are all counting down the drives to get to the boxwork structures — this will be such an exciting campaign to be part of.
      As APXS operations planner today, I was really interested to see if we could get APXS close to one of the raised ridges, to determine what they are made of. The Rover Planners were able to get a paired set of targets — “Orosco Ridge” along a ridge and “Box Canyon” in the adjacent, flat center of the polygon. The ChemCam team is also interested (in truth, everyone on the team is interested!!) in the composition of the ridges. So ChemCam will use LIBS to measure both bedrock and ridge fill at “Kitchen Creek” on the first sol of the plan and “Storm Canyon” on the second sol.  
      The “problem” with a workspace like this is picking which images to take in our short time here, before we drive on the second sol. We could stay here for a week and still find things to look at in this workspace. After much discussion, it was decided that MAHLI should focus on a “dog’s eye” mosaic (“Valley of the Moon”) along the vertical face of the large block. We hope this will allow us to examine how the fractures interact with each other, and with the preexisting layering in the bedrock.  
      Mastcam will then focus on the two main blocks in the workspace in an 8×4 (4 rows of 8 images) Kitchen Creek mosaic, which also encompasses the LIBS target of the same name, and a single image on the Storm Canyon LIBS target. Three smaller mosaics at “Green Valley Falls” (3×1), “Lost Palms Canyon” (7×2) and “San Andreas Fault” (1×2) will examine the relationships between the polygonal features and other fractures in the workspace, close to the rover. 
      Further afield, ChemCam will turn the “LD RMI” (Long-Distance Remote Micro Imager) on “Texoli” butte (the large butte to the side of the rover, visible in this image from sol 4528). Both Mastcam and ChemCam will image the boxwork fracture system near Ghost Mountain — they are so close now, it’s just a few drives away! Any information we get now may be able to help us answer some of the questions we have on the origin and timing of the boxwork structures, especially when we can combine it with the in situ analysis we will be getting shortly! (Did I mention how excited we all are about this campaign?)With all the excitement today on the wild fracture structures, it could be easy to overlook Curiosity’s dataset of environmental and atmospheric data. For more than 12 years now, we have been collecting information on dust and argon levels in the atmosphere, water and chlorine levels in the subsurface, wind speeds, humidity, temperature, ultraviolet radiation, pressure, and capturing movies and images of dust devils. This weekend is no different, adding a full complement of activities from almost every team — Navcam, REMS, DAN, Mastcam, ChemCam, and APXS will all collect data for the environmental and atmospheric theme group (ENV) in this plan.
      Share








      Details
      Last Updated May 06, 2025 Related Terms
      Blogs Explore More
      2 min read Searching for Spherules to Sample


      Article


      11 hours ago
      2 min read Sols 4527-4528: ‘Boxwork Ahoy!’


      Article


      1 day ago
      3 min read Sols 4525-4526: The Day After Groundhog Day (Between Ghost Mountain and Texoli, Headed South)


      Article


      5 days ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
  • Check out these Videos

×
×
  • Create New...