Jump to content

Recommended Posts

  • Publishers
Posted

6 min read

Sols 4219-4221: It’s a Complex Morning…

There are many whiteish rocks in the area that lately attracted the team’s special interest, as this image, taken by Right Navigation Camera onboard NASA's Mars rover Curiosity on Sol 4217 (2024-06-17 02:10:34 UTC) shows.
There are many whiteish rocks in the area that lately attracted the team’s special interest, as this image, taken by Right Navigation Camera onboard NASA’s Mars rover Curiosity on Sol 4217 (2024-06-17 02:10:34 UTC) shows.
NASA/JPL-Caltech

Earth planning date: Monday, June 17, 2024

Who thought it was a good idea to select a name with the word ‘mammoth’ in it? Well, we don’t remember who did it, and if we did, we wouldn’t say anyways… but these rocks take ‘Mammoth Lakes’ and seem to translate it into ‘Mammoth Effort’ for the team here on Earth! You may have seen my colleague Conor’s blog about ‘The best laid plans’, and today we tried again.

For a start, orbital mechanics wasn’t our friend on this nervous Monday morning: the data we needed reached us – as scheduled – in the early morning hours; hence assessment could only begin shortly before the normal start of the planning day. The assessment of a preload test is not a quick task as it concerns rover health and safety. Even with over 11 years of experience, engineers want to look very, very closely. Or shall I say, tongue in cheek, after over 11 years of experience we want to look even closer as we have seen many of the ways Mars rocks can play tricks on us and we are pretty sure that the rocks have even more surprises up their sleeves! We don’t want to get caught out by… a rock!

With that assessment still ongoing (can you feel the nerves?!), the team had to start planning assuming we would go ahead with the drill. I was Geo Science Theme Lead today, and it was my task to help navigate through the things that we would want to do, if we pass the preload assessment and are going to drill. And it was also agreed that if this isn’t going to work today, we would try another preload test. The science team really wants to see what these bright rocks are made of, as bright, almost white colour on a basaltic planet always means that it is different and interesting.. Water rock interactions are my favourite possible explanation, but I don’t want to speculate, I prefer to interpret data… but those would come after the drill! Cliffhanger, part one, we kept asking those with an ear close to the engineering rooms for updates, but the only updates were that there are no updates… yet. I am not good at waiting, are you?

We were planning four sols today, but one of them is a ‘soliday’  – a day on Earth with no corresponding sol on Mars. They come up occasionally to re-synchronise Earth and Mars timings (and to not make downlinks even closer to start of planning). This is because an Earth day is 24 hours long, but a Mars day is 24 hours, 39 minutes, 35 seconds long. Therefore, Mars and Earth days get slowly but surely out of sync and planning would have to happen in the middle of the Earth night. Therefore, Curiosity gets a break thanks to orbital mechanics (and human sleep patterns).  But just before Curiosity gets a break (and the humans, too, for Juneteenth), there is a lot of work to do, even with this cliffhanger still ongoing.

The plan started – optimistically, and yes, with the cliffhanger STILL ongoing – with the full drill and everything we always do to assess whether the drill is successful. This includes an image of the newly accomplished (hopefully, are you keeping your fingers crossed?!) drill hole, an image of the drill bit inspecting our tools, and a ChemCem Remote Micro Imager mosaic of the drill hole.  ChemCam also does a passive spectral investigation of the drill tailings (are you still holding your breath that we even get to uplink the commands?!). Most of the drill activities happen on sol 4219, and just the ChemCam activities happen in sol 4220. Also, on sol 4220 ChemCam investigates the target “Longley Pass,” which is also a whitish rock.

Well, if these rocks play tricks on us and make us wait this long for an answer, we can at least shoot them with a laser and get some more data this way. Mastcam documents the ChemCam target Longley Pass and does two more single frame images of the targets “Walker Lake2” and “Finch Lake,” both of which you will have seen in previous blogs. They are part of a change detection campaign, where we repeatedly image the same location to find out if the sand moves. This helps with assessing the current winds on Mars. But that’s just the warm up for Mastcam, which will then embark on a 334 image journey 360° around the rover, also known as a 360-panorama. Given the very exciting landscape, we are all very much looking forward to getting to see this! But before that, the question is still there: will we get the go for drilling?! It’s one and a half hours into planning, and we still don’t know.

Finally on sol 4221 there is more ChemCam laser activity, this time on the target Quarry Peak, and there is a long-distance mosaic by ChemCam, too, to further document all the different sedimentary structures around us. Last but not least, our part of the plan had some ‘homework’ in form of a ChemCam calibration activity. There is more, of course, as the environmental group looks at dust devils and the opacity of the atmosphere and the DAN instrument performs its routine cadence of measurements. It’s a fully packed plan!

And the cliffhanger? Well, not so fast… after the initial planning meeting everyone who has assembled parts of the plan will meet in the so-called Science Operations Working Group meeting. I was really hoping for a result then, but we were told we had to wait just a little longer. Mars doesn’t make things easy, and we fully trust the engineers to make the right call. But will that call be the one the scientist in me wants? Will we drill?

We got through all of this meeting and about an hour later had a fully integrated plan, and still no word from the engineers. Come on, Mars, do you have to make it this hard?!

Planning rarely gets this tight and nerve wracking to be honest. But then, when Mars decides to write the script, we can either decide that we forego the measurement… or that we try again. And try again was what we were after.

Almost two hours of planning done, time for a break in the planning meeting cadence and dinner in my part of the world, but I wasn’t really hungry, to be honest. I just wanted to hear the outcome.

And finally, 3 hours and 38 minutes after the start of planning,  “GO GO GO” accompanied by a smiley with a wide grin appeared in the chat, straight from Ashwin, the project scientist.

And breathe… Let’s hope Mars rewards our brilliant engineers’ efforts!

Written by Susanne Schwenzer, Planetary Geologist at The Open University

Share

Details

Last Updated
Jun 18, 2024

Related Terms

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions Mars Home 2 min read
      Curiosity Blog, Sols 4580-4581: Something in the Air…
      NASA’s Mars rover Curiosity acquired this image using its Left Navigation Camera on June 23, 2025 — Sol 4578, or Martian day 4,578 of the Mars Science Laboratory mission — at 02:38:50 UTC. NASA/JPL-Caltech Written by Scott VanBommel, Planetary Scientist at Washington University in St. Louis
      Earth planning date: Monday, June 23, 2025
      Curiosity was back at work on Monday, with a full slate of activities planned. While summer has officially arrived for much of Curiosity’s team back on Earth, Mars’ eldest active rover is recently through the depths of southern Mars winter and trending toward warmer temperatures itself. Warmer temperatures mean less component heating is required and therefore more power is freed up for science and driving. However, the current cooler temperatures do present an opportunity to acquire quality short-duration APXS measurements first thing in the morning, which is what Curiosity elected to do once again.
      Curiosity’s plan commenced by brushing a rock target with potential cross-cutting veins, “Hornitos,” and subsequently analyzing it with APXS. A sequence of Mastcam images followed on targets such as “Volcán Peña Blanca,” “La Pacana,” “Iglesia de Jarinilla de Umatia,” and “Ayparavi.” ChemCam, returning to action after a brief and understood hiatus, rounded out the morning’s chemical analysis activities with a 5-point analysis of Ayparavi. After some images of the brush, and a handful of MAHLI snaps of Hornitos, Curiosity was on its way with a planned drive of about 37 meters (about 121 feet).Curiosity’s night would not be spent entirely dreaming of whatever rovers dream, but rather conducting a lengthy APXS analysis of the atmosphere. These analyses enable Curiosity’s team to assess the abundance of argon in the atmosphere — from a volume about the size of a pop can (or soda can, depending on your unit of preference) — which can be used to trace global circulation patterns and better understand modern Mars. Recently, Curiosity has been increasing the frequency of these measurements and pairing them with ChemCam “Passive Sky” observations. These ChemCam activities do not utilize the instrument’s laser, but instead use its other components to characterize the air above the rover. By combining APXS and ChemCam observations of the atmosphere, Curiosity’s team is able to better assess daily and seasonal trends in gases around Gale crater. A ChemCam “Passive Sky” was the primary observation in the second sol of the plan, with Curiosity spending much of the remaining time recharging and eagerly awaiting commands from Wednesday’s team.

      For more Curiosity blog posts, visit MSL Mission Updates


      Learn more about Curiosity’s science instruments

      Share








      Details
      Last Updated Jun 26, 2025 Related Terms
      Blogs Explore More
      2 min read Clay Minerals From Mars’ Most Ancient Past?


      Article


      3 days ago
      4 min read Curiosity Blog, Sols 4577-4579: Watch the Skies


      Article


      6 days ago
      2 min read Curiosity Blog, Sols 4575-4576: Perfect Parking Spot


      Article


      6 days ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions Mars Home 4 min read
      Curiosity Blog, Sols 4577-4579: Watch the Skies
      NASA’s Mars rover Curiosity acquired this image inside a trough in the boxwork terrain on Mars, using its Right Navigation Camera. Curiosity captured the image on June 20, 2025 — Sol 4575, or Martian day 4,575 of the Mars Science Laboratory mission — at 00:30:12 UTC. NASA/JPL-Caltech Written by Deborah Padgett, OPGS Task Lead at NASA’s Jet Propulsion Laboratory
      Earth planning date: Friday, June 20, 2025
      During the plan covering Sols 4575-4576, Curiosity continued our investigation of mysterious boxwork structures on the shoulders of Mount Sharp. After a successful 56-meter drive (about 184 feet), Curiosity is now parked in a trough cutting through a highly fractured region covered by linear features thought to be evidence of groundwater flow in the distant past of Mars. With all six wheels firmly planted on solid ground, our rover is ready for contact science! Unfortunately, a repeat of the frost-detection experiment expected for the weekend plan is postponed for a few days due to a well-understood ChemCam issue. In the meantime, our atmospheric investigations have a chance to shine, as they received additional time to observe the Martian sky.
      In the early afternoon of Sol 4577, Curiosity’s navigation cameras will take a movie of the upper reaches of Aeolis Mons (Mount Sharp), hoping to see moving cloud shadows. This observation enables the team to calculate the altitude of clouds drifting over the peak. Next, Navcam will point straight up, to image cloud motion at the zenith and determine wind direction at their altitude. Mastcam will then do a series of small mosaics to study the rover workspace and features of the trough that Curiosity has entered. First is a 6×4 stereo mosaic of the workspace and the contact science targets “Copacabana” and “Copiapo.” The first target is a representative sample of the trough bedrock, and its name celebrates a town in Bolivia located on the shores of Lake Titicaca. The second target is a section of lighter-toned material, which may be associated with stripes or “veins” filling the many crosscutting fractures in the local stones. These are the deposits potentially left by groundwater intrusion long ago. The name “Copiapo” honors a silver mining city in the extremely dry Atacama desert of northern Chile. A second 6×3 Mastcam stereo mosaic will look at active cracks in the trough. Two additional 5×1 Mastcam stereo mosaics target “Ardamarca,” a ridge parallel to the trough walls, and a cliff exposing layers of rock at the base of “Mishe Mokwa” butte. At our current location, all the Curiosity target names are taken from the Uyuni geologic quadrangle named after the otherworldly lake bed and ephemeral lake high on the Bolivian altiplano, but the Mishe Mokwa butte is back in the Altadena quad, named for a popular hiking trail in the Santa Monica Mountains. After this lengthy science block, Curiosity will deploy its arm, brush the dust from Copacabana with the DRT, then image both it and Copiapo with the MAHLI microscopic imager. Overnight, APXS will determine the composition of these two targets. 
      Early in the morning of Sol 4578, Mastcam will take large 27×5 and 18×3 stereo mosaics of different parts of the trough, using morning light to highlight the terrain shadows. Later in the day, Navcam will do a 360 sky survey, determining phase function across the entire sky. A 25-meter drive (about 82 feet) will follow, and the post-drive imaging includes both a 360-degree Navcam panorama of our new location and an image of the ground under the rover with MARDI in the evening twilight. The next sol is all atmospheric science, with an extensive set of afternoon suprahorizon movies and a dust-devil survey for Navcam, as well as a Mastcam dust opacity observation. The final set of observations in this plan happens on the morning of Sol 4580 with more Navcam suprahorizon and zenith movies to observe clouds, a Navcam dust opacity measurement across Gale Crater, and a last Mastcam tau. On Monday, we expect to plan another drive and hope to return to the frost-detection experiment soon as we explore the boxwork canyons of Mars.

      For more Curiosity blog posts, visit MSL Mission Updates


      Learn more about Curiosity’s science instruments

      Share








      Details
      Last Updated Jun 20, 2025 Related Terms
      Blogs Explore More
      2 min read Curiosity Blog, Sols 4575-4576: Perfect Parking Spot


      Article


      5 hours ago
      3 min read Curiosity Blog, Sols 4573-4574: Welcome to the Uyuni Quad


      Article


      2 days ago
      3 min read Curiosity Blog, Sols 4570-4572: A Fond Farewell, With a Side of Frost


      Article


      6 days ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions Mars Home 2 min read
      Curiosity Blog, Sols 4575-4576: Perfect Parking Spot
      NASA’s Mars rover Curiosity acquired this image of interesting textures exposed in an outcrop at the base of the “Mishe Mokwa” butte, ahead of the rover, using its Chemistry & Camera (ChemCam) Remote Micro Imager (RMI). Curiosity captured the image on June 13, 2025 — Sol 4569, or Martian day 4,569 of the Mars Science Laboratory mission — at 17:53:55 UTC. NASA/JPL-Caltech/LANL Written by Lucy Thompson, APXS Collaborator and Senior Research Scientist at the University of New Brunswick
      Earth planning date: Wednesday, June 18,  2025
      Not only did our drive execute perfectly, Curiosity ended up in one of the safest, most stable parking spots of the whole mission. We often come into the start of planning hoping that all the wheels are safely on the ground, but the terrain on Mars is not always very cooperative. As the APXS strategic planner I was really hoping that the rover was stable enough to unstow the arm and place APXS on a rock — which it was! We are acquiring APXS and ChemCam compositional analyses and accompanying Mastcam and MAHLI imaging of a brushed, flat, typical bedrock target, “Tarija.” This allows us to track the chemistry of the bedrock that hosts the potential boxwork features that we are driving towards. 
      As well as composition, we continue to image the terrain around us to better understand the local and regional context. Mastcam will acquire mosaics of some linear ridges off to the north of our current location, as well as of a potential fracture fill just out in front of our current parking spot, “Laguna del Bayo.” ChemCam will image part of an interesting outcrop (“Mishe Mokwa”) that we have already observed (see the image associated with this blog).
      Thanks to the relatively benign terrain, the engineers have planned a 54-meter drive (about 177 feet) to our next location. After that drive (hopefully) executes successfully, we have a series of untargeted science observations. MARDI will image the terrain beneath the wheels and ChemCam will pick a rock target autonomously from our new workspace and analyze its chemistry. 
      To track atmospheric and environmental fluctuations, we are acquiring a Mastcam tau to measure dust in the sky as well as a Navcam large dust-devil survey and suprahorizon movie. The plan is rounded, as always, with standard DAN, REMS, and RAD activities.

      For more Curiosity blog posts, visit MSL Mission Updates


      Learn more about Curiosity’s science instruments

      Share








      Details
      Last Updated Jun 20, 2025 Related Terms
      Blogs Explore More
      3 min read Curiosity Blog, Sols 4573-4574: Welcome to the Uyuni Quad


      Article


      2 days ago
      3 min read Curiosity Blog, Sols 4570-4572: A Fond Farewell, With a Side of Frost


      Article


      6 days ago
      2 min read Curiosity Blog, Sols 4568-4569: A Close Look at the Altadena Drill Hole and Tailings


      Article


      7 days ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions Mars Home 3 min read
      Curiosity Blog, Sols 4573-4574: Welcome to the Uyuni Quad
      NASA’s Mars rover Curiosity acquired this image, looking southwest toward the distant large boxwork structures in the Uyuni quad, using its Left Navigation Camera on June 15, 2025 — Sol 4571, or Martian day 4,571 of the Mars Science Laboratory mission — at 21:27:38 UTC. NASA/JPL-Caltech Written by Lauren Edgar, Planetary Geologist at USGS Astrogeology Science Center
      Earth planning date: Monday, June 16, 2025
      Over the weekend Curiosity successfully wrapped up activities at the “Altadena” drill site and got back on the road. The approximately 48-meter drive (about 157 feet) was successful, and placed the rover in the next mapping quadrangle (informally referred to as a quad). 
      As a reminder, the rover’s exploration area has been divided into 1.5 kilometer by 1.5 kilometer square quads, and each quad is named after a town of less than 100,000 people. As Curiosity explores features within a quad, we assign informal target names that correspond to geologic formations and features from that town on Earth.
      Uyuni, Bolivia, is the gateway city near the world’s largest salt flats (salars), and it seems like an appropriate name as Curiosity explores drier depositional environments higher in the Mount Sharp stratigraphy. The team is excited to use some new target names that will draw from Uyuni and surrounding areas, including the Atacama Desert in Chile, which hosts many Mars analog sites including eolian features, studies of life in extreme environments, and some of the world’s great observatories. A fitting theme for this next phase of exploration!
      As for today’s two-sol plan, we have a good balance of contact science, remote sensing, and another long drive. The team planned APXS and MAHLI on a nodular bedrock target named “Flamingo” to assess its chemistry and texture. In the targeted remote sensing block, the science team planned a Mastcam mosaic of “Los Patos” to characterize a depression which may be related to a small impact crater or boxwork structures, along with a Mastcam image of “La Lava” to investigate an interesting dark block. There are also several Mastcam mosaics of nearby troughs to assess active surface processes, and documentation images for ChemCam observations. The plan includes a ChemCam LIBS observation on a target named “Tacos” to assess the local bedrock, and a long-distance RMI mosaic to evaluate sedimentary structures at “Mishe Mokwa” butte. Then the rover will drive about 56 meters (about 184 feet) to the southwest, and take post-drive imaging to prepare for the next plan. On the second sol, Curiosity will complete a ChemCam calibration target activity, a Mastcam data management activity, and a few Navcam activities to monitor clouds and dust in the atmosphere.
      We’re looking forward to exploring more of Uyuni as we work our way toward the larger exposure of boxwork structures that lie ahead, and the clues they hold to ancient Mars conditions.

      For more Curiosity blog posts, visit MSL Mission Updates


      Learn more about Curiosity’s science instruments

      Share








      Details
      Last Updated Jun 18, 2025 Related Terms
      Blogs Explore More
      3 min read Curiosity Blog, Sols 4570-4572: A Fond Farewell, With a Side of Frost


      Article


      4 days ago
      2 min read Curiosity Blog, Sols 4568-4569: A Close Look at the Altadena Drill Hole and Tailings


      Article


      5 days ago
      2 min read Curiosity Blog, Sols 4566-4567: Drilling Success


      Article


      7 days ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions Mars Home 2 min read
      Curiosity Blog, Sols 4568-4569: A Close Look at the Altadena Drill Hole and Tailings
      NASA’s Mars rover Curiosity acquired this image of the “Altadena” drill hole using its Mast Camera (Mastcam) on June 8, 2025 — Sol 4564, or Martian day 4,564 of the Mars Science Laboratory mission — at 13:57:45 UTC. NASA/JPL-Caltech/MSSS Written by Sharon Wilson Purdy, Planetary Geologist at the Smithsonian National Air and Space Museum
      Earth planning date: Wednesday, June 11, 2025
      As we near the end of our Altadena drill campaign, Curiosity continued her exploration of the Martian bedrock within the boxwork structures on Mount Sharp. After successfully delivering a powdered rock sample to both the CheMin (Chemistry and Mineralogy) and SAM (Sample Analysis at Mars) instruments, the focus for sols 4568 and 4569 was to take a closer look at the drill hole itself — specifically, the interior walls of the drill hole and the associated tailings (the rock material pushed out by the drill).
      In the image above, you can see that the tone (or color) of the rock exposed within the wall of the drill hole appears to change slightly with depth, and the drill tailings are a mixture of fine powder and more solid clumps. If you compare the Altadena drill site with the 42 drill sites that came before, one can really appreciate the impressive range of colors, textures, and grain sizes in the rocks that Curiosity has analyzed over the past 12 years. Every drill hole marks a window into the past and can help us understand how the ancient environment and climate on Mars evolved over time.
       In this two-sol plan, the ChemCam, Mastcam, APXS, and MAHLI instruments coordinated their observations to image and characterize the chemistry of the wall of the drill hole and tailings before we drive away from this site over the coming weekend. Outside of our immediate workspace, Mastcam created two stereo mosaics that will image the boxwork structures nearby as well as the layers within Texoli butte. ChemCam assembled three long-distance RMI images that will help assess the layers at the base of the “Mishe Mokwa” hill, complete the imaging of the nearby boxwork structures, and image the very distant crater rim (about 90 kilometers, or 56 miles away) and sky to investigate the scattering properties of the atmosphere. The environmental theme group included observations that will measure the properties of the atmosphere and also included a dust-devil survey.
      Share








      Details
      Last Updated Jun 13, 2025 Related Terms
      Blogs Explore More
      2 min read Curiosity Blog, Sols 4566-4567: Drilling Success


      Article


      2 days ago
      4 min read Curiosity Blog, Sols 4563-4565: Doing What We Do Best


      Article


      5 days ago
      4 min read Sols 4561-4562: Prepping to Drill at Altadena


      Article


      1 week ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
  • Check out these Videos

×
×
  • Create New...