Jump to content

Recommended Posts

Posted
low_STSCI-H-p0326a-k-1340x520.png

Results from NASA's Hubble Space Telescope played a major role in preparing ESA's ambitious Rosetta mission for its new target, comet 67P/Churyumov-Gerasimenko (67P/C-G). For the first time in history, Rosetta will land a probe on a comet and study its origin. Hubble precisely measured the size, shape, and rotational period of comet 67P/C-G. The Hubble observations revealed comet 67P/C-G to be a football-shaped object of approximately three miles by two miles in size---large enough to provide a landing site for the Rosetta mission probe.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Scientists find that cometary dust affects interpretation of spacecraft measurements, reopening the case for comets like 67P as potential sources of water for early Earth. 
      Researchers have found that water on Comet 67P/Churyumov–Gerasimenko has a similar molecular signature to the water in Earth’s oceans. Contradicting some recent results, this finding reopens the case that Jupiter-family comets like 67P could have helped deliver water to Earth.  
      Water was essential for life to form and flourish on Earth and it remains central for Earth life today. While some water likely existed in the gas and dust from which our planet materialized around 4.6 billion years ago, much of the water would have vaporized because Earth formed close to the Sun’s intense heat. How Earth ultimately became rich in liquid water has remained a source of debate for scientists.
      Research has shown that some of Earth’s water originated through vapor vented from volcanoes; that vapor condensed and rained down on the oceans. But scientists have found evidence that a substantial portion of our oceans came from the ice and minerals on asteroids, and possibly comets, that crashed into Earth. A wave of comet and asteroid collisions with the solar system’s inner planets 4 billion years ago would have made this possible.   
      This image, taken by ESA’s Rosetta navigation camera, was taken from a about 53 miles from the center of Comet 67P/Churyumov-Gerasimenko on March 14, 2015. The image resolution is 24 feet per pixel and is cropped and processed to bring out the details of the comet’s activity. ESA/Rosetta/NAVCAM While the case connecting asteroid water to Earth’s is strong, the role of comets has puzzled scientists. Several measurements of Jupiter-family comets — which contain primitive material from the early solar system and are thought to have formed beyond the orbit of Saturn — showed a strong link between their water and Earth’s. This link was based on a key molecular signature scientists use to trace the origin of water across the solar system.
      This signature is the ratio of deuterium (D) to regular hydrogen (H) in the water of any object, and it gives scientists clues about where that object formed. Deuterium is a rare, heavier type — or isotope — of hydrogen. When compared to Earth’s water, this hydrogen ratio in comets and asteroids can reveal whether there’s a connection.  
      Because water with deuterium is more likely to form in cold environments, there’s a higher concentration of the isotope on objects that formed far from the Sun, such as comets, than in objects that formed closer to the Sun, like asteroids. 
      Measurements within the last couple of decades of deuterium in the water vapor of several other Jupiter-family comets showed similar levels to Earth’s water. 
      “It was really starting to look like these comets played a major role in delivering water to Earth,” said Kathleen Mandt, planetary scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Mandt led the research, published in Science Advances on Nov. 13, that revises the abundance of deuterium in 67P. 

      About Kathleen Mandt

      But in 2014, ESA’s (European Space Agency) Rosetta mission to 67P challenged the idea that Jupiter-family comets helped fill Earth’s water reservoir. Scientists who analyzed Rosetta’s water measurements found the highest concentration of deuterium of any comet, and about three times more deuterium than there is in Earth’s oceans, which have about 1 deuterium atom for every 6,420 hydrogen atoms.  
      “It was a big surprise and it made us rethink everything,” Mandt said.  
      Mandt’s team decided to use an advanced statistical-computation technique to automate the laborious process of isolating deuterium-rich  water in more than 16,000 Rosetta measurements. Rosetta made these measurements in the “coma” of gas and dust surrounding 67P. Mandt’s team, which included Rosetta scientists, was the first to analyze all of the European mission’s water measurements spanning the entire mission. 
      The researchers wanted to understand what physical processes caused the variability in the hydrogen isotope ratios measured at comets. Lab studies and comet observations showed that cometary dust could affect the readings of the hydrogen ratio that scientists detect in comet vapor, which could change our understanding of where comet water comes from and how it compares to Earth’s water. 
      What are comets made of? It’s one of the questions ESA’s Rosetta mission to comet 67P/Churyumov-Gerasimenko wanted to answer. “So I was just curious if we could find evidence for that happening at 67P,” Mandt said. “And this is just one of those very rare cases where you propose a hypothesis and actually find it happening.” 
      Indeed, Mandt’s team found a clear connection between deuterium measurements in the coma of 67P and the amount of dust around the Rosetta spacecraft, showing that the measurements taken near the spacecraft in some parts of the coma may not be representative of the composition of a comet’s body.  
      As a comet moves in its orbit closer to the Sun, its surface warms up, causing gas to release from the surface, including dust with bits of water ice on it. Water with deuterium sticks to dust grains more readily than regular water does, research suggests. When the ice on these dust grains is released into the coma, this effect could make the comet appear to have more deuterium than it has.  
      Mandt and her team reported that by the time dust gets to the outer part of the coma, at least 75 miles from the comet body, it is dried out. With the deuterium-rich water gone, a spacecraft can accurately measure the amount of deuterium coming from the comet body.
      This finding, the paper authors say, has big implications not only for understanding comets’ role in delivering Earth’s water, but also for understanding comet observations that provide insight into the formation of the early solar system.  
      “This means there is a great opportunity to revisit our past observations and prepare for future ones so we can better account for the dust effects,” Mandt said. 
      By Lonnie Shekhtman
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Explore More
      9 min read Towards Autonomous Surface Missions on Ocean Worlds


      Article


      31 mins ago
      1 min read Coming Spring 2025: Planetary Defenders Documentary
      ow would humanity respond if we discovered an asteroid headed for Earth? NASA’s Planetary Defenders…


      Article


      52 mins ago
      5 min read What’s Up: December 2024 Skywatching Tips from NASA


      Article


      1 day ago
      Share








      Details
      Last Updated Dec 03, 2024 Editor Lonnie Shekhtman Contact Lonnie Shekhtman lonnie.shekhtman@nasa.gov Location Goddard Space Flight Center Related Terms
      Comets Goddard Space Flight Center Planetary Science Planetary Science Division Rosetta Science Mission Directorate The Solar System View the full article
    • By NASA
      Many team members at NASA’s Johnson Space Center in Houston may recognize Alicia Baker as the talented flutist in the Hispanic Employee Resource Group’s Mariachi Celestial band. Or, they may have worked with Baker in her role as a spacesuit project manager, testing NASA’s prototype spacesuits and preparing Johnson’s test chambers to evaluate vendor spacesuits.

      Alicia Baker in a spacesuit test chamber at Johnson Space Center.NASA/David DeHoyos They might be surprised to learn that Baker juggled these responsibilities and more while also caring for her late husband, Chris, as he fought a terminal illness for 16 years.

      “It was hard taking care of a loved one with cancer and working full-time,” Baker said. “My husband was also disabled from a brain tumor surgery, so I had to help him with reading, writing, walking, and remembering, while managing the household.”

      Baker worked closely with her manager to coordinate schedules and get approval to telework so that she could work around her husband’s medical appointments and procedures. She also took medical leave when her husband entered hospice care in 2020. Baker said her manager’s flexibility “saved her job” and allowed her to continue providing for her family. She was even able to advance from project engineer to test director to project manager during this time period.

      Alicia Baker and her husband Chris on their wedding day. Image courtesy of Alicia Baker Baker is one of the many Johnson employees who are or have been a caregiver for a loved one. These caregivers provide help to a person in need who often has a medical condition or injury that affects their daily functioning. Their needs may be temporary or long-term, and they could be physical, medical, financial, or domestic in nature.

      Recognizing the challenging and critical role caregivers play in their families, the Johnson community provides a variety of resources to support team members through the Employee Assistance Program. Additionally, Johnson’s No Boundaries Employee Resource Group (NoBo) supports caregivers through its programs and initiatives.

      Baker participates in both the support group and NoBo activities and takes comfort in sharing her and her husband’s story with others. “I would do it all over again,” she said of her caregiver role.

      Now she looks forward to future missions to the Moon, when NASA astronauts will conduct spacewalks on the lunar surface while wearing new spacesuits. “Then I can say I helped make that possible!” Throughout all of her experiences, Baker has learned to never give up. “If you have a dream, keep fighting for it,” she said.
      View the full article
    • By NASA
      Dec. 2, 2024
      NASA astronauts Matthew Dominick, Mike Barratt, Jeanette Epps, and Tracy C. DysonNASA RELEASE: J24-015
      Expedition 71 Astronauts to Discuss Mission in NASA Welcome Home Event
      Four NASA astronauts will participate in a welcome home ceremony at Space Center Houston after recently returning from a mission aboard the International Space Station.
      NASA astronauts Matthew Dominick, Mike Barratt, Jeanette Epps, and Tracy C. Dyson will share highlights from their mission beginning at 6 p.m. CST Wednesday, Dec. 4, during a free, public event at NASA Johnson Space Center’s official visitor center. The crew will also recognize key contributors to mission success in an awards ceremony following the presentation.
      The astronauts will be available at 5 p.m. for media interviews before the event. Media may request an in-person interview no later than 5 p.m. Tuesday, Dec. 3, by emailing Dana Davis at dana.l.davis@nasa.gov.
      Expedition 71
      NASA’s SpaceX Crew-8 mission launched to the space station in March 2024 as the eighth commercial crew rotation mission. The crew spent 235 days in space, traveled 100 million miles, and completed 3,760 orbits around the Earth, splashing down off the coast of Pensacola, Florida, on Oct. 25, 2024. This was the first spaceflight for Dominick and Epps and the third spaceflight for Barratt, who has logged 447 days in space over the course of his career. The crew also saw the arrival and departure of eight visiting vehicles during their mission.
      Dyson flew with an international crew, launching aboard the Soyuz MS-25 in March 2024. The six-month research mission was the third spaceflight of her career, and her second long-duration spaceflight. Dyson’s third spaceflight covered 2,944 orbits of the Earth and a journey of 78 million miles as an Expedition 70/71 flight engineer. She has now logged a total of 373 days in space, including more than 23 hours in four spacewalks. Dyson and her crewmembers landed safely in Kazakhstan on Sept. 24, 2024.
      While aboard the station, the Expedition 71 crew contributed to hundreds of technology demonstrations and experiments including the bioprinting of human tissues. These higher quality tissues printed in microgravity could help advance the production of organs and tissues for transplant and improve 3D printing of foods and medicines on future long-duration space missions. The crew also looked at neurological organoids, created with stem cells from patients to study neuroinflammation, a common feature of neurodegenerative conditions such as Parkinson’s disease. The organoids provide a platform to study these diseases and their treatments and could help address how extended spaceflight affects the brain.
      Stay current on space station activities by following @space_station and @ISS_Research on X, as well as the station Facebook and Instagram accounts and the space station blog.
      -end-
      Jaden Jennings
      Johnson Space Center, Houston
      713-281-0984
      jaden.r.jennings@nasa.gov
      Dana Davis
      Johnson Space Center, Houston
      281-244-0933
      dana.l.davis@nasa.gov
      View the full article
    • By NASA
      The SpaceX Dragon spacecraft departs the International Space Station as it orbits 264 miles above the south Pacific Ocean northeast of New Zealand.Credit: NASA NASA and its international partners are set to receive scientific research samples and hardware as a SpaceX Dragon spacecraft departs the International Space Station on Thursday, Dec. 5, for its return to Earth.
      NASA’s live coverage of undocking and departure begins at 10:50 a.m. EST on NASA+. Learn how to watch NASA content through a variety of platforms, including social media.
      The Dragon spacecraft will undock from the forward port of the space station’s Harmony module at 11:05 a.m., and fire its thrusters to move a safe distance away from the station after receiving a command from ground controllers at SpaceX.
      After re-entering Earth’s atmosphere, the spacecraft will splash down off the coast of Florida. NASA will not stream the splashdown and will post updates on the agency’s space station blog.
      Filled with nearly 6,000 pounds of crew supplies, science investigations, and equipment, the spacecraft arrived to the orbiting laboratory Nov. 5 after it launched Nov. 4 on a Falcon 9 rocket from Launch Complex 39A at NASA’s Kennedy Space Center in Florida for the agency’s SpaceX 31st commercial resupply services mission.
      Dragon will carry back to Earth thousands of pounds of supplies and scientific experiments designed to take advantage of the space station’s microgravity environment. Splashing down off the coast of Florida enables quick transportation of the experiments to NASA’s Space Systems Processing Facility at Kennedy Space Center, allowing researchers to collect data with minimal sample exposure to Earth’s gravity.
      Scientific hardware and samples returning to Earth include GISMOS (Genes in Space Molecular Operations and Sequencing), which successfully conducted in-orbit sequencing of microbial DNA from the space station water system, and marks the first real look at the microbial population of the water system. In addition, SpaceTED (Space Tissue Equivalent Dosimeter) returns to Earth after collecting data on crew radiation exposure and characterizes the space radiation environment. The dosimeter is a student-developed technology demonstration and effectively operated for 11 months on station – six months longer than intended because of its success.
      Additionally, two specimens printed with ESA’s (European Space Agency) Metal 3D Printer, will go to researchers for post-processing and analysis. Researchers will compare the specimens printed in microgravity with those printed on Earth. The goal is to demonstrate the capability to perform metal deposition, or the layering of metals, in 3D under sustained microgravity conditions and manufacture test specimens. Researchers aim to understand the performance and limitations of the chosen technology and become familiar with crewed and remote operations of the instrument onboard a space habitat.
      Also returning on spacecraft is the International Space Art and Poetry Contest, which invited students and educators around the world to submit drawings, paintings, or poems. Winning art submissions were printed on station, photographed in the cupola, and will be returned to their creators on Earth. In addition, Plasmonic Bubbles researchers will observe high-speed video of bubble behavior in microgravity to understand fundamental processes that occur on a heated bubble surface. Results may improve understanding of how molecules are deposited on bubble surfaces and enhance detection methods for health care and environmental industries.
      For more than two decades, people have lived and worked continuously aboard the International Space Station, advancing scientific knowledge, and making research breakthroughs that are not possible on Earth. The station is a critical testbed for NASA to understand and overcome the challenges of long-duration spaceflight and to expand commercial opportunities in low Earth orbit. As commercial companies focus on providing human space transportation services and destinations as part of a robust low Earth orbit economy, NASA is focusing more resources on deep space missions to the Moon as part of its Artemis campaign in preparation for future human missions to Mars.
      Get breaking news, images and features from the space station on Instagram, Facebook, and X.
      Learn more about the International Space Station at:
      https://www.nasa.gov/international-space-station
      -end-
      Claire O’Shea / Joshua Finch
      Headquarters, Washington
      202-358-1100
      claire.a.o’shea@nasa.gov / joshua.a.finch@nasa.gov
      Sandra Jones
      Johnson Space Center, Houston
      281-483-5111
      sandra.p.jones@nasa.gov
      Share
      Details
      Last Updated Dec 02, 2024 LocationNASA Headquarters Related Terms
      International Space Station (ISS) Commercial Resupply ISS Research Johnson Space Center SpaceX Commercial Resupply View the full article
    • By NASA
      jsc2024e064444 (Sept. 30, 2024) — The crew members of NASA’s SpaceX Crew-10 mission (from left) mission specialist Kirill Peskov of Roscosmos, NASA astronauts Nichole Ayers, pilot, and Anne McClain, commander, along with Mission Specialist Takuya Onishi of JAXA (Japan Aerospace Exploration Agency), pose for a picture during training at SpaceX in Hawthorne, California. SpaceX Digital content creators are invited to register to attend the launch of NASA’s SpaceX Crew-10 mission to carry astronauts to the International Space Station for a science expedition mission as part of NASA’s Commercial Crew Program. This will be the 14th time a SpaceX Dragon spacecraft launched by a Falcon 9 rocket takes crews to the orbital laboratory. 
      Launch of NASA’s SpaceX Crew-10 mission is targeted for no earlier than February 2025 on a SpaceX Falcon 9 rocket from Florida. The launch will carry NASA astronauts Anne McClain, commander, and Nichole Ayers, pilot, JAXA (Japan Aerospace Exploration Agency) astronaut Takuya Onishi, mission specialist, along with Roscosmos cosmonaut Kirill Peskov. 
      If your passion is to communicate and engage the world online, then this is the event for you! Seize the opportunity to see and share the #Crew10 mission launch. 
      A maximum of 50 social media users will be selected to attend this two-day event and will be given exclusive access to Kennedy. 
      NASA Social participants will have the opportunity to: 
      View a crewed launch of the SpaceX Falcon 9 rocket and Dragon spacecraft  Tour NASA facilities at Kennedy Space Center  Meet and interact with Crew-10 subject matter experts  Meet fellow space enthusiasts who are active on social media  NASA Social registration for the Crew-10 launch opens on Monday, Dec. 2, and the deadline to apply is at 10 a.m. EDT on Monday, Dec. 16. All social applications will be considered on a case-by-case basis. 
      APPLY NOW 
      Do I need to have a social media account to register? 
       Yes. This event is designed for people who: 
      Actively use multiple social networking platforms and tools to disseminate information to a unique audience.  Regularly produce new content that features multimedia elements.  Have the potential to reach a large number of people using digital platforms, or reach a unique audience, separate and distinctive from traditional news media and/or NASA audiences.  Must have an established history of posting content on social media platforms.  Have previous postings that are highly visible, respected and widely recognized.  Users on all social networks are encouraged to use the hashtag #NASASocial and #Crew10. Updates and information about the event will be shared on X via @NASASocial and @NASAKennedy, and via posts to Facebook and Instagram. 
      How do I register? 
      Registration for this event opens on Monday, Dec. 2, and closes at 10 a.m. EDT on Monday, Dec. 16. Registration is for one person only (you) and is non-transferable. Each individual wishing to attend must register separately. Each application will be considered on a case-by-case basis. 
      Can I register if I am not a U.S. citizen? 
      Yes, this event is open for all to apply. 
      When will I know if I am selected? 
      After registrations have been received and processed, an email with confirmation information and additional instructions will be sent to those selected. We expect to send the acceptance notifications by Jan. 24. 
      What are NASA Social credentials? 
      All social applications will be considered on a case-by-case basis. Those chosen must prove through the registration process they meet specific engagement criteria. 
      If you do not make the registration list for this NASA Social, you still can attend the launch offsite and participate in the conversation online. Find out about ways to experience a launch here. 
      What are the registration requirements? 
      Registration indicates your intent to travel to NASA’s Kennedy Space Center in Florida and attend the two-day event in person. You are responsible for your own expenses for travel, accommodations, food, and other amenities. 
      Some events and participants scheduled to appear at the event are subject to change without notice. NASA is not responsible for loss or damage incurred as a result of attending. NASA, moreover, is not responsible for loss or damage incurred if the event is cancelled with limited or no notice. Please plan accordingly. 
      Kennedy is a government facility. Those who are selected will need to complete an additional registration step to receive clearance to enter the secure areas. 
      IMPORTANT: To be admitted, you will need to provide two forms of unexpired government-issued identification; one must be a photo ID and match the name provided on the registration. Those without proper identification cannot be admitted. 
      For a complete list of acceptable forms of ID, please visit: NASA Credentialing Identification Requirements. 
      All registrants must be at least 18 years old. 
      What if the launch date changes? 
      Many different factors can cause a scheduled launch date to change multiple times. If the launch date changes, NASA may adjust the date of the NASA Social accordingly to coincide with the new target launch date. NASA will notify registrants of any changes by email. 
      If the launch is postponed, attendees may be invited to attend a later launch date, but is not guaranteed. 
      NASA Social attendees are responsible for any additional costs they incur related to any launch delay. We strongly encourage participants to make travel arrangements that are refundable and/or flexible. 
      What if I cannot come to the Kennedy Space Center? 
      If you cannot come to the Kennedy Space Center and attend in person, you should not register for the NASA Social. You can follow the conversation online using #NASASocial.  
      You can watch the launch on NASA+ or plus.nasa.gov. NASA will provide regular launch and mission updates on @NASA, @NASAKennedy, and @Commercial_Crew, as well as on NASA’s Commercial Crew Program blog. 
      If you cannot make this NASA Social, don’t worry; NASA is planning many other Socials in the near future at various locations! 
      Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      ISS National Laboratory
      Commercial Crew Spacecraft
      View the full article
  • Check out these Videos

×
×
  • Create New...