Jump to content

Recommended Posts

  • Publishers
Posted

2 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

Artist's Concept of the satellite that carries NASA's Aquarius instrument.
NASA’s Aquarius instrument aboard the joint U.S. and Argentinian Satélite de Aplicaciones Científicas mapped the surface salinity of Earth’s oceans between 2011 and 2014. To calibrate the instrument, a team from NASA’s Jet Propulsion Laboratory, including project scientist Yi Chao, had to distribute robotic floats across oceans. The experience helped inspire Chao’s invention of an inexhaustible power source for ocean floats and sensors.
Credit: NASA

No one has mapped more territory than NASA. The agency not only charts stars and other planets but also maps Earth from orbit. Now a NASA invention could let robots map our planet’s entire seafloor, helping to unlock resources while protecting habitats. The sonar devices for such an operation are not new, but they’re hampered by battery limitations.

As an engineer at NASA’s Jet Propulsion Laboratory in Southern California, Yi Chao learned about those limitations firsthand. He worked on studying the ocean from space and was the project scientist for the Aquarius satellite mission measuring ocean salinity. The satellite’s instruments were calibrated with sensors that had to be distributed across the oceans. He found that a major constraint to monitoring oceans is the battery life of subsurface sensors, which can’t rely on solar energy. When their batteries die, they’re either left dead in the water or recharged by ship at great expense.

Two of Seatrec’s SL1 modules attached to a robotic float
Two of Seatrec’s SL1 modules are attached to a robotic float. The modules generate power from changes in volume undergone by phase-change materials as the float rises from colder deep water to warmer surface water. By adding a second module, the operator doubles the available energy.
Credit: Seatrec

With two JPL colleagues, Chao set out to design a solution. The power modules they developed are based on what’s known as a phase-change material, in this case a paraffin-family substance with a melting point about 50°F – between typical deep-ocean and surface temperatures. As a device rises to the surface to transmit data, the material melts and expands, turning a motor that charges the battery. It’s the same concept as a steam engine, but changing from solid to liquid brings about a 10% expansion, so the trick was to make the device efficient enough to operate on that tiny bit of energy.

Chao then licensed the invention and founded Seatrec Inc. of Vista, California. The company sells its SL1 power module to research labs, universities, government researchers, and the military. Chao noted that many entities, including offshore drillers, wind farm developers, the military, and environmentalists, are interested in mapping the 80% of the seafloor that remains uncharted.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions The Solar System The Sun Mercury Venus Earth The Moon Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets Asteroids, Comets & Meteors The Kuiper Belt The Oort Cloud 3 min read
      Sols 4386-4388: Powers of Ten
      NASA’s Mars rover Curiosity acquired this image using its Left Navigation Camera on sol 4384 — Martian day 4,384 of the Mars Science Laboratory mission — Dec. 5, 2024, at 19:08:43 UTC. NASA/JPL-Caltech Earth planning date: Friday, Dec. 6, 2024
      We successfully arrived in our new exploration quadrangle — the Altadena quad — which is named after a town on Earth very near our own Jet Propulsion Laboratory! The names from this quad will recognize the incredible interaction between Altadena and its surrounding environs with the San Andreas and other major faults, which led to the formation of several major mountain ranges, and with the rich human history of the area. The start of our activities in the Altadena quad was fairly typical, including observations both near to and far from the rover, depending on what catches our eye across the terrain. Today’s observations were no exception, but it strikes me that they fit into fairly neat order of magnitude bins that really crystallize how far-reaching (pun intended) Curiosity’s science is.
      The nearest observation is of the rover itself, with MAHLI placed around 10 centimeters (about 4 inches) from its calibration target for a series of images tracking the amount of dust clinging to the target. 
      One meter (about 39 inches) from the front of the rover, MAHLI and APXS planned an analysis of a small float block, “Icehouse Canyon,” that resembled rocks we saw in Gediz Vallis. MAHLI, APXS, and ChemCam teamed up to analyze the DRT target located on typical bedrock in the workspace at “Sunland,” and ChemCam rastered across one the many veins in the workspace at target “Echo Mountain.” One meter (about one yard) in back of (and underneath) the rover, DAN scheduled multiple analyses that look to provide insight into water in the subsurface. 
      Tens of meters (tens of yards) from the rover, our interest in recording the many veins of this area continued. Mastcam planned three mosaics covering different collections of these long, linear features, some of which are visible in the lower left corner of the image above, to support study of their orientations. 
      Hundreds of meters from the rover, ChemCam looked back at Gediz Vallis, planning RMI mosaics of materials on both Gediz Vallis Ridge and within Gediz Vallis itself. The mosaics add more insight to that which we gained as we traversed through Gediz Vallis as the team tries to interpret the formation of the ridge and valley. Mastcam added coverage of this same area and extended their imaging a bit farther to include a small crater, “Grant Lake,” well south of the rover. 
      Thousands of meters from the rover (five-eighths of a mile, and beyond), ChemCam acquired a mosaic of the wind-sculpted structures that cap Mount Sharp, known as yardangs. 
      Finally, gazing up into the Martian atmosphere that extends tens of thousands of meters into space (6 miles, and multiples beyond that), Navcam planned early morning and midday imaging to assess the amount of dust in the atmosphere and search for clouds and dust devils. ChemCam planned a passive sky observation to measure certain chemical compounds in the atmosphere, and REMS and RAD included their regular schedule of weather and radiation monitoring, respectively. 
      The weekend plan is truly science across the scales!
      Written by Michelle Minitti, Planetary Geologist at Framework
      Share








      Details
      Last Updated Dec 10, 2024 Related Terms
      Blogs Explore More
      3 min read Sols 4384-4385: Leaving the Bishop Quad


      Article


      4 days ago
      3 min read Sols 4382-4383: Team Work, Dream Work


      Article


      7 days ago
      3 min read Sols 4375-4381: A Stuffed Holiday Plan


      Article


      1 week ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
    • By European Space Agency
      On 1 December 2024, BepiColombo flew past Mercury for the fifth time. During this flyby, BepiColombo became the first spacecraft ever to observe Mercury in mid-infrared light. The new images reveal variations in temperature and composition across the planet's cratered surface.
      View the full article
    • By NASA
      8 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Virtual meetings feeling a little stale? NASA has just unveiled a suite of new Artemis backgrounds to elevate your digital workspace.

      From the majesty of the Artemis I launch lighting up the night sky to the iconic image of the Orion spacecraft with the Moon and Earth in view, these virtual backgrounds allow viewers to relive the awe-inspiring moments of Artemis I and glimpse the bright future that lies ahead as the Artemis campaign enables humans to live and work at the Moon’s South Pole region.

      Scroll through to download your next virtual background for work, school, or just for fun, and learn about all things Artemis as the agency and its partners cross off milestones leading up to Artemis II and missions beyond.

      Artemis I Launch
      Credit: NASA/Bill Ingalls NASA’s SLS (Space Launch System) rocket carrying the Orion spacecraft launches on the Artemis I flight test on Nov. 16, 2022, from Launch Complex 39B at NASA’s Kennedy Space Center in Florida. NASA’s Artemis I mission was the first integrated flight test of the agency’s deep space exploration systems: the Orion spacecraft, SLS rocket, and ground systems. SLS and Orion launched at 1:47 a.m. EST from Launch Pad 39B at Kennedy.
      Artemis II Crew
      Credit: NASA Meet the astronauts who will fly around the Moon during the Artemis II mission. From left are Commander Reid Wiseman, Pilot Victor Glover, and Mission Specialist Christina Koch from NASA, and Mission Specialist Jeremy Hansen from the Canadian Space Agency.
      Astronaut Regolith
      Credit: NASA An artist’s concept of two suited Artemis crew members working on the lunar surface. The samples collected during future Artemis missions will continue to advance our knowledge of the solar system and help us understand the history and formation of Earth and the Moon, uncovering some of the mysteries that have long eluded scientists.
      Exploration Ground Systems
      Credit: NASA NASA’s mobile launcher, atop Crawler Transporter-2, is at the entrance to High Bay 3 at the Vehicle Assembly Building (VAB) on Sept. 8, 2018, at NASA’s Kennedy Space Center in Florida. This is the first time that the modified mobile launcher made the trip to the pad and the VAB. The mobile launcher is the structure that is used to assemble, process, and launch the SLS rocket.
      Credit: NASA/Joel Kowsky NASA’s SLS rocket with the Orion spacecraft aboard is seen atop a mobile launcher at Launch Pad 39B on Nov. 4, 2022, as Crawler Transporter-2 departs the pad following rollout at NASA’s Kennedy Space Center in Florida.
      Credit: NASA After Orion splashed down in the Pacific Ocean, west of Baja California, the spacecraft was recovered by personnel on the USS Portland from the U.S. Department of Defense, including Navy amphibious specialists, Space Force weather specialists, and Air Force specialists, as well as engineers and technicians from NASA’s Kennedy Space Center in Florida, the agency’s Johnson Space Center in Houston, and Lockheed Martin Space Operations. Personnel from NASA’s Exploration Ground Systems led the recovery efforts.
      Credit: NASA/Keegan Barber NASA’s SLS (Space Launch System) rocket with the Orion spacecraft aboard is seen atop a mobile launcher as it rolls out to Launch Complex 39B for the first time on March 17, 2022, at NASA’s Kennedy Space Center in Florida. At left is the Vehicle Assembly Building.
      First Woman
      Credit: NASA “First Woman” graphic novel virtual background featuring an illustration of the inside of a lunar space station outfitted with research racks and computer displays. To learn more about the graphic novel and interactive experiences, visit: nasa.gov/calliefirst/
      Credit: NASA “First Woman” graphic novel virtual background featuring the illustration of the inside of a lunar space station outfitted with research racks and computer displays, along with zero-g indicator suited rubber duckies floating throughout. To learn more about the graphic novel and interactive experiences, visit: nasa.gov/calliefirst/
      Credit: NASA This “First Woman” graphic novel virtual background features an illustrated scene from a lunar mission. At a lunar camp, one suited astronaut flashes the peace sign while RT, the robot sidekick, waves in the foreground. To learn more about the graphic novel and interactive experiences, visit: nasa.gov/calliefirst/
      Gateway
      Credit: NASA The Gateway space station hosts the Orion spacecraft and SpaceX’s deep space logistics spacecraft in a polar orbit around the Moon, supporting scientific discovery on the lunar surface during the Artemis IV mission.
      Credit: Northrop Grumman and Thales Alenia Space The Gateway space station’s HALO (Habitation and Logistics Outpost) module, one of two of Gateway’s habitation elements where astronauts will live, conduct science, and prepare for lunar surface missions, successfully completed welding in Turin, Italy. Following a series of tests to ensure its safety, the future home for astronauts will travel to Gilbert, Arizona, for final outfitting ahead of launch to lunar orbit. Gateway will be humanity’s first space station in lunar orbit and is an essential component of the Artemis campaign to return humans to the Moon for scientific discovery and chart a path for human missions to Mars.
      Lunar Surface
      Credit: SpaceX Artist’s concept of SpaceX Starship Human Landing System, or HLS, which is slated to transport astronauts to and from the lunar surface during Artemis III and IV.
      Credit: Blue Origin Artist’s concept of Blue Origin’s Blue Moon MK-2 human lunar lander, which is slated to land astronauts on the Moon during Artemis V.
      Credit: NASA The “Moon buggy” for NASA’s Artemis missions, the Lunar Terrain Vehicle (LTV), is seen here enabling a pair of astronauts to explore more of the Moon’s surface and conduct science research farther away from the landing site. NASA has selected Intuitive Machines, Lunar Outpost, and Venturi Astrolab to advance capabilities for an LTV.
      Credit: JAXA/Toyota An artist’s concept of the pressurized rover — which is being designed, developed, and operated by JAXA (Japan Aerospace Exploration Agency) — is seen driving across the lunar terrain. The pressurized rover will serve as a mobile habitat and laboratory for the astronauts to live and work for extended periods of time on the Moon.
      Logo
      Credit: NASA The NASA “meatball” logo. The round red, white, and blue insignia was designed by employee James Modarelli in 1959, NASA’s second year. The design incorporates references to different aspects of NASA’s missions.
      Credit: NASA The NASA meatball logo (left) and Artemis logo side by side.
      Moon Phases
      Credit: NASA The different phases of the Moon, shown in variations of shadowing, extend across this virtual background.
      Orion
      Credit: NASA On flight day 5 during Artemis I, the Orion spacecraft took a selfie while approaching the Moon ahead of the outbound powered flyby — a burn of Orion’s main engine that placed the spacecraft into lunar orbit. During this maneuver, Orion came within 81 miles of the lunar surface.
      Credit: NASA On flight day 13 during Artemis I, Orion reached its maximum distance from Earth at 268,563 miles away from our home planet, traveling farther than any other spacecraft built for humans.
      Credit: NASA This first high-resolution image, taken on the first day of the Artemis I mission, was captured by a camera on the tip of one of Orion’s solar arrays. The spacecraft was 57,000 miles from home and distancing itself from planet Earth as it approached the Moon and distant retrograde orbit.
      Silhouettes
      Credit: NASA In this virtual background, various scenes from Earth, Moon, and Mars are depicted within the silhouette outlines of three suited astronauts, artistically representing the interconnected nature of human space exploration from low Earth orbit to the Moon and, one day, human missions to Mars.
      SLS (Space Launch System)
      Credit: Joel Kowsky In this sunrise photo at NASA’s Kennedy Space Center in Florida, NASA’s SLS rocket with the Orion spacecraft aboard is seen atop the mobile launcher at Launch Pad 39B as preparations continued for the Artemis I launch.
      Credit: NASA/Joel Kowsky In this close-up image, NASA’s SLS rocket with the Orion spacecraft aboard is seen atop the mobile launcher at Launch Pad 39B on Nov. 12, 2022, at NASA’s Kennedy Space Center in Florida.
      Credit: NASA/Joel Kowsky NASA’s SLS rocket with the Orion spacecraft aboard is seen at sunrise atop the mobile launcher at Launch Pad 39B on Nov. 7, 2022, at NASA’s Kennedy Space Center in Florida.
      Earth, Moon, and Mars
      Credit: NASA From left, an artist’s concept of the Moon, Earth, and Mars sharing space. NASA’s long-term goal is to send humans to Mars, and we will use what we learn at the Moon to help us get there. This is the agency’s Moon to Mars exploration approach.  
      Credit: NASA In this artist’s concept, the upper portion of a blended sphere represents the Earth, Moon, and Mars.
      Credit: NASA An artist’s concept showing, from left, the Earth, Moon, and Mars in sequence. Mars remains our horizon goal for human exploration because it is a rich destination for scientific discovery and a driver of technologies that will enable humans to travel and explore far from Earth. 
      About the Author
      Catherine E. Williams

      Share
      Details
      Last Updated Dec 02, 2024 Related Terms
      Humans in Space Artemis Artemis 1 Artemis 2 Artemis 3 Artemis 4 Artemis 5 Exploration Systems Development Mission Directorate Explore More
      6 min read NASA’s Commercial Partners Make Progress on Low Earth Orbit Projects
      Article 7 days ago 4 min read NASA Marshall Thermal Engineering Lab Provides Key Insight to Human Landing System
      Article 1 week ago 8 min read Preguntas frecuentes: La verdadera historia del cuidado de la salud de los astronautas en el espacio
      Article 2 weeks ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      ESI24 Nam Quadchart
      SungWoo Nam
      University of California, Irvine
      Lunar dust may seem unimposing, but it presents a significant challenge for space missions. Its abrasive and jagged particles can damage equipment, clog devices, and even pose health risks to astronauts. This project addresses such issues by developing advanced coatings composed of crumpled nano-balls made from atomically thin 2D materials such as MoS₂, graphene, and MXenes. By crumpling these nanosheets—much like crumpling a piece of paper—we create compression and aggregation resistant particles that can be dispersed in sprayable solutions. As a thin film coating, these crumpled nano-balls form corrugated structures that passively reduce dust adhesion and surface wear. The deformable crumpled nano-ball (DCN) coating works by minimizing the contact area between lunar dust and surfaces, thanks to its unique nano-engineered design. The 2D materials exhibit exceptional durability, withstanding extreme thermal and vacuum environments, as well as resisting radiation damage. Additionally, the flexoelectric and electrostatically dissipative properties of MoS₂, graphene, and MXenes allow the coating to neutralize and dissipate electrical charges, making them highly responsive to the charged lunar dust environment. The project will be executed in three phases, each designed to bring the technology closer to real-world space applications. First, we will synthesize the crumpled nano-balls and investigate their adhesion properties using advanced microscopy techniques. The second phase will focus on fundamental testing in simulated lunar environments, where the coating will be exposed to extreme temperatures, vacuum, radiation, and abrasion. Finally, the third phase will involve applying the coating to space-heritage materials and conducting comprehensive testing in a simulated lunar environment, targeting up to 90% dust clearance and verifying durability over repeated cycles of dust exposure. This research aligns with NASA’s goals for safer, more sustainable lunar missions by reducing maintenance requirements and extending equipment lifespan. Moreover, the potential applications extend beyond space exploration, with the technology offering promising advances in terrestrial industries such as aerospace and electronics by providing ultra-durable, wear-resistant surfaces. Ultimately, the project contributes to advancing materials science and paving the way for NASA’s long-term vision of sustainable space exploration.
      Back to ESI 2024
      Keep Exploring Discover More Topics From STRG
      Space Technology Mission Directorate
      STMD Solicitations and Opportunities
      Space Technology Research Grants
      About STRG
      View the full article
    • By NASA
      5 Min Read Making Mars’ Moons: Supercomputers Offer ‘Disruptive’ New Explanation
      A NASA study using a series of supercomputer simulations reveals a potential new solution to a longstanding Martian mystery: How did Mars get its moons? The first step, the findings say, may have involved the destruction of an asteroid. 
      The research team, led by Jacob Kegerreis, a postdoctoral research scientist at NASA’s Ames Research Center in California’s Silicon Valley, found that an asteroid passing near Mars could have been disrupted – a nice way of saying “ripped apart” – by the Red Planet’s strong gravitational pull.
      The team’s simulations show the resulting rocky fragments being strewn into a variety of orbits around Mars. More than half the fragments would have escaped the Mars system, but others would’ve stayed in orbit. Tugged by the gravity of both Mars and the Sun, in the simulations some of the remaining asteroid pieces are set on paths to collide with one another, every encounter further grinding them down and spreading more debris. 
      Many collisions later, smaller chunks and debris from the former asteroid could have settled into a disk encircling the planet. Over time, some of this material is likely to have clumped together, possibly forming Mars’ two small moons, Phobos and Deimos.
      To assess whether this was a realistic chain of events, the research team explored hundreds of different close encounter simulations, varying the asteroid’s size, spin, speed, and distance at its closest approach to the planet. The team used their high-performance, open-source computing code, called SWIFT, and the advanced computing systems at Durham University in the United Kingdom to study in detail both the initial disruption and, using another code, the subsequent orbits of the debris.
      In a paper published Nov. 20 in the journal Icarus, the researchers report that, in many of the scenarios, enough asteroid fragments survive and collide in orbit to serve as raw material to form the moons. 
      “It’s exciting to explore a new option for the making of Phobos and Deimos – the only moons in our solar system that orbit a rocky planet besides Earth’s,” said Kegerreis. “Furthermore, this new model makes different predictions about the moons’ properties that can be tested against the standard ideas for this key event in Mars’ history.”
      Two hypotheses for the formation of the Martian moons have led the pack. One proposes that passing asteroids were captured whole by Mars’ gravity, which could explain the moons’ somewhat asteroid-like appearance. The other says that a giant impact on the planet blasted out enough material – a mix of Mars and impactor debris – to form a disk and, ultimately, the moons. Scientists believe a similar process formed Earth’s Moon.
      The latter explanation better accounts for the paths the moons travel today – in near-circular orbits that closely align with Mars’ equator. However, a giant impact ejects material into a disk that, mostly, stays close to the planet. And Mars’ moons, especially Deimos, sit quite far away from the planet and probably formed out there, too. 
      “Our idea allows for a more efficient distribution of moon-making material to the outer regions of the disk,” said Jack Lissauer, a research scientist at Ames and co-author on the paper. “That means a much smaller ‘parent’ asteroid could still deliver enough material to send the moons’ building blocks to the right place.”
      It’s exciting to explore a new option for the making of Phobos and Deimos – the only moons in our solar system that orbit a rocky planet besides Earth’s.
      Jacob Kegerreis
      Postdoctoral research scientist at NASA’s Ames Research Center
      Testing different ideas for the formation of Mars’ moons is the primary goal of the upcoming Martian Moons eXploration (MMX) sample return mission led by JAXA (Japan Aerospace Exploration Agency). The spacecraft will survey both moons to determine their origin and collect samples of Phobos to bring to Earth for study. A NASA instrument on board, called MEGANE – short for Mars-moon Exploration with GAmma rays and Neutrons – will identify the chemical elements Phobos is made of and help select sites for the sample collection. Some of the samples will be collected by a pneumatic sampler also provided by NASA as a technology demonstration contribution to the mission. Understanding what the moons are made of is one clue that could help distinguish between the moons having an asteroid origin or a planet-plus-impactor source.
      Before scientists can get their hands on a piece of Phobos to analyze, Kegerreis and his team will pick up where they left off demonstrating the formation of a disk that has enough material to make Phobos and Deimos. 
      “Next, we hope to build on this proof-of-concept project to simulate and study in greater detail the full timeline of formation,” said Vincent Eke, associate professor at the Institute for Computational Cosmology at Durham University and a co-author on the paper. “This will allow us to examine the structure of the disk itself and make more detailed predictions for what the MMX mission could find.”  
      For Kegerreis, this work is exciting because it also expands our understanding of how moons might be born – even if it turns out that Mars’ own formed by a different route. The simulations offer a fascinating exploration, he says, of the possible outcomes of encounters between objects like asteroids and planets. These events were common in the early solar system, and simulations could help researchers reconstruct the story of how our cosmic backyard evolved. 
      This research is a collaborative effort between Ames and Durham University, supported by the Institute for Computational Cosmology’s Planetary Giant Impact Research group. The simulations used were run using the open-source SWIFT code, carried out on the DiRAC (Distributed Research Utilizing Advanced Computing) Memory Intensive service (“COSMA”), hosted by Durham University on behalf of the DiRAC High-Performance Computing facility.
      For news media:
      Members of the news media interested in covering this topic should reach out to the NASA Ames newsroom.
      Share
      Details
      Last Updated Nov 20, 2024 Related Terms
      Mars Ames Research Center Ames Research Center's Science Directorate General High-Tech Computing Mars Moons Martian Moon Exploration (MMX) Missions NASA Centers & Facilities Planets Technology The Solar System Explore More
      5 min read NASA’s Swift Reaches 20th Anniversary in Improved Pointing Mode
      After two decades in space, NASA’s Neil Gehrels Swift Observatory is performing better than ever…
      Article 1 hour ago 2 min read Gateway Tops Off
      Gateway’s Power and Propulsion Element is now equipped with its xenon and liquid fuel tanks.
      Article 2 hours ago 2 min read About the Office of the Chief Knowledge Officer (OCKO)
      Article 6 hours ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
  • Check out these Videos

×
×
  • Create New...