Jump to content

Recommended Posts

  • Publishers
Posted

From the first lunar footsteps of Apollo to the threshold of humanity’s return aboard the Artemis missions, Ted Michalek has been part of the fabric of Goddard for 55 years — and counting!

Name: Theodore “Ted” Michalek
Title: Chief technical engineer (retired), now consultant
Formal Job Classification: Thermal engineer
Organization: Thermal Engineering Branch (Code 545), Mechanical Division (Code 540) and Systems Review Office, Flight Assurance Directorate (Code 301)

Black and white image of a man sitting on a wooden bench wearing a hat, vest, and plaid short sleeve shirt.
Theodore “Ted” Michalek is a consultant thermal engineer at NASA’s Goddard Space Flight Center in Greenbelt, Md. After 40 years at Goddard, he retired in 2009, but returned part-time as a contractor consultant.
Courtesy of Ted Michalek

What do you do and what is most interesting about your role here at Goddard?

I’ve been a thermal engineer at Goddard since May 1970, over 50 years. I’m currently a consultant to the lead thermal engineer for the Roman Space Telescope mission. I am also part of a team reviewing the Compact Coronagraph Instrument (CCOR-2) which will fly on the Space Weather Follow On (SWFO) mission. The thermal engineering discipline involves and affects all of the hardware and systems on all spaceflight hardware, and is involved from “cradle to grave,” from conception to the end of every mission.

What is your educational background?

I went to the Baltimore Polytechnic Institute, a Baltimore City public high school with an engineering preparatory curriculum. In 1969, I earned a B.S. in aerospace engineering from the University of Maryland.

How did you become a thermal engineer?

From the time I was 2, I was always fascinated by things that flew, especially airplanes. I originally wanted to be a pilot, but my mother found that I was partially color blind so I could not become a pilot. I decided to become an aeronautical engineer instead. In college, I did not enjoy the aerodynamics courses, so I gravitated to the structural design of flight systems. It was the Apollo era and I was fascinated by the space program, and was fortunate to get a job at Goddard in a mechanical design group. After a year, I was transferred to the thermal design group which, at that time, had a critical shortage of engineers.

How did you come to Goddard?

Though a job fair and interviews, I came to Goddard in June 1969 about one month before the first moon landing, Apollo 11.

Why have you stayed at Goddard for over 50 years?

I’ve stayed at Goddard because it’s a really good place to work and the work is interesting. I was on the front line of thermal engineering for spacecraft design. Although I retired in 2009, I returned as a contractor consultant. After 40 years, I only wanted to work part time, but have enjoyed keeping my hand in the field, continuing to contribute, and working with the people.

What is most challenging about being a consultant to the lead thermal engineer for the Roman Space Telescope?

Roman is a challenging mission thermally since much of the instrument and optical portions of the observatory need to be maintained at temperatures well below room temperature. Not as cold as the James Webb Space Telescope, but still a challenge.  I had been doing reviews for Roman when it started, and eventually became part of their team. The lead thermal engineer is a very good guy whom I helped mentor when he first arrived in the thermal branch about 15 years ago. Thankfully I gave him good technical advice years ago, and am glad to be helping him out again. I’m proud that he has been so successful.

What is your role in reviewing the CCOR-2 instrument?

The systems review office at Goddard has a program of periodic reviews of every big project several times during their development phase from inception to launch. Every project has a committee of technical experts from various branches who are usually senior engineers who act as independent reviewers. The project presents to this review committee, discipline by discipline. There are success criteria for each periodic review. Each review has a pass-fail grade with details of what went into the grade, specific recommendations and advisories which are less binding than the formal recommendations. If there is really a problem, which is rare, they might get a lien, a restriction against proceeding beyond a certain point until a specific problem has been corrected.

What are your career highlights?

I’ve had many. One was being part of a small group of technical experts at Goddard who served as consultants to Argentina’s space agency, CONAE, when it was first formed and when they were designing their first orbiting satellite in the late 1980s and early 1990s. I went to Argentina a few times, and to Brazil twice for thermal testing. Another was being lead thermal engineer for the Earth Radiation Budget Satellite (ERBS) that was launched from a space shuttle. I also worked quite a bit on the WMAP (Wilkinson Microwave Anisotropy Probe) design, test and launch effort, and I also had the opportunity to work on the big Webb telescope test done in Houston before launch. I traveled to Houston for 10 days, every month, for five months to support that test, including right after Hurricane Harvey.

Do you know that your nickname is the Thermal Engineer Guru?

I may have heard that before. It’s OK, though the original thermal guru for me was Robert Kidwell, the assistant branch head when I joined the thermal branch, and was my first mentor there. A large part of the later part of my career included informal mentoring and reviews. I was responsible, as the chief technical engineer, for the technical output of my branch, so I spent a lot of my time talking with the engineers in the thermal branch, especially when they were involved in difficult technical situations. I worked with them to help make decisions. The job also included conducting periodic engineering peer reviews.

One of the engineers I worked with quite a bit said that they were the ones firing the cannon and I was especially good at aiming the cannon. That made me feel good.

Black and white image of a man operating a camera on a tripod wearing safety glasses, a jacket, pants, and a hat.
“Take advantage of the culture at Goddard to learn your job as well as you can, which will enable you to take on more responsibility in time and contribute as much as you can to these missions,” said Ted Michalek. “I’ve always been appreciative and excited about how all of Goddard’s missions contribute to our knowledge of the universe and the quality of our life on Earth.”
Courtesy of Ted Michalek

What changes have you seen in Goddard over the years?

The one big change is how the complexity of the missions has evolved. Our missions have gotten more sophisticated in technology and science. The size and complexity of our missions has increased. Thermal engineers work with almost every other disciplinary area including the scientists because everyone’s equipment has different thermal requirements.

I don’t think the culture of Goddard has changed that much. Goddard has always been a group of very smart and dedicated people who are devoted to the missions that they are working. Goddard generally has a very collegial and collaborative atmosphere. Over the years, the coordination of the different technical and science disciplines has improved, I’d say primarily because of the evolution of the systems engineering function which is a key part of every project, and has been for some time now. We also document more thoroughly now than we did when I started.

In 1970, when three of us entered the thermal branch, the first thing the branch did was have the assistant branch head conduct a three month training class. He was a pioneer in the field of thermal design for spacecraft, the real thermal guru. Over the years, the thermal branch has continued this kind of training class for incoming engineers.

I came to work at Goddard 10 years after Goddard was created. When Goddard opened, there was a need to develop a workforce that knew how to build and launch spacecraft. Among other things, we had a number of people who came from the U.S. Naval Research Lab, or NRL, one of whom was the assistant branch head who taught us. Most of these people had worked on the Vanguard Project, which resulted in the launch of the second U.S. satellite to orbit the Earth.

I came to Goddard about 12 years after the field of thermal engineering for space flight was started. I was there for the continuing maturation of this field. Because our missions are so much more complex, the field keeps evolving. Computer modeling is an important part of the field and that has gone through a huge evolution since I was a young thermal engineer, including collaboration with the structural analysts to predict in-orbit deformations, which is a key on many missions these days, including Roman. Also, the thermal hardware we have to utilize has evolved, necessarily, to answer the demands of ever more complex science missions.

My first year at Goddard, we were doing vibration testing on a spacecraft model. I remember clearly thinking, as I was trying to position the instrumentation, that Goddard has been doing this for 10 years, and wondered if I’d ever do something new and different. Little did I know how much more evolution would go on from then until now.  Every mission is different and requires creative ways to meet ever more demanding requirements.

What do you do for fun?

I have been a semi-serious bird watcher for the last 35 years. About three years ago, I was introduced to several aspects that rekindled my interest. One is a free app for my cellphones called Merlin, developed by the Cornell Laboratory of Ornithology, which helps identify birds. Another is a free app called eBird, also developed by the Cornell Laboratory of Ornithology, which allows you to list the birds that you have seen on an outing and report it to Cornell’s worldwide data base. Now I feel like when I am going birding, I can easily keep track of the birds I have seen and at the same time help contribute to bird studies.

I also recently became involved in watching hawks in particular. There is a network of people and organizations from Canada to the northern part of South America who, during the fall and spring migration seasons, have expert observers in carefully chosen locations. The data from these sites goes into a database that’s been kept and analyzed for almost five decades now. These observers are charged with counting every migrating hawk they can see, daily, for two to three months. These people are fantastic in how they can do this tough job, in the outdoors, sometimes on a platform, from 7 a.m. until 4 or 5 p.m. every day, seven days a week, for two to three months at a time. Some are paid professionals. Depending on the location, day and weather, these hawk watches can count anything from zero migrant hawks to, in the Panama Canal Zone, 300,000 hawks. That’s in one day at the peak of the season. I really have a lot of respect for these hawk watchers.

A man standing on a large rock overlooking a valley. The man is visible from behind looking through binoculars. A tripod is in front of him.
Ted Michalek on a birding trip in May 2024 at Bradbury Mountain Hawkwatch area, at the summit, about 5 miles NW of Freeport, ME.
Courtesy of Ted Michalek

On a birding trip in May 2024, I visited two of these hawkwatch sites, one at Bradbury Mountain State Park in Maine, and the other at Braddock Bay State Park in New York. In addition to getting some great practice at hawk identification, I learned first-hand the influence that weather, including wind direction, has in the daily flights, and how well the official hawk counters know the hawks and where to look for them based on the conditions, and how they can tell migrants (which they report) from local birds (which they don’t). It’s amazing how they’re able to quickly, at a glance sometimes, identify a hawk at a distance of several miles. At Braddock Bay, I was fortunate to be there on a couple of days when they had daily counts of more than 1,000 migrant hawks, and can attest first hand to the skill and focus necessary to identify and count that many birds. It was a good trip: in addition to visiting family, I saw 16 species of birds on this trip that I’d not seen before, including my first golden eagle, called to my attention by the professionals at Braddock Bay.

What lessons or words of wisdom would you pass along to somebody just starting their career at Goddard?

Take advantage of the culture at Goddard to learn your job as well as you can, which will enable you to take on more responsibility in time and contribute as much as you can to these missions. I’ve always been appreciative and excited about how all of Goddard’s missions contribute to our knowledge of the universe and the quality of our life on Earth. 

Who do you want to thank?

I want to thank my family, my wife especially. And also my parents who provided me with a nurturing and secure upbringing, and an education.  My wife and I homeschooled our two children through high school. I helped in the evening, but she did the bulk of the work. My wife has always been very supportive of my career. We met at Goddard. In the early ’70s, I taught a beginners’ class for the Goddard karate club and she was a student of mine. She offered me a correction for one of the exercises I had them do, and I listened and corrected it. My sister, our children and grandchildren, and the rest of my family have always been supportive of and interested in my career as NASA. I’m thankful to have such a wonderful extended family.

From my early years at the thermal branch, I would also like to thank Ed Powers, who transferred me into the thermal branch and became the assistant director of engineering before he retired. Ed recently made a presentation about the early history of the thermal branch in the 1960s. I’m helping him a bit with his presentation. I would also like to thank Norm Ackerman, who was also a thermal branch head. Both of them were my supervisors and also two of many excellent mentors and leaders I worked with at Goddard.

By Elizabeth M. Jarrell
NASA’s Goddard Space Flight Center, Greenbelt, Md.

A banner graphic with a group of people smiling and the text "Conversations with Goddard" on the right. The people represent many genders, ethnicities, and ages, and all pose in front of a soft blue background image of space and stars.

Conversations With Goddard is a collection of Q&A profiles highlighting the breadth and depth of NASA’s Goddard Space Flight Center’s talented and diverse workforce. The Conversations have been published twice a month on average since May 2011. Read past editions on Goddard’s “Our People” webpage.

Share

Details

Last Updated
Jun 04, 2024
Editor
Madison Olson
Contact
Location
Goddard Space Flight Center

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Teams with NASA’s Exploration Ground Systems Program lift the agency’s SLS (Space Launch System) core stage for the Artemis II mission from horizonal to vertical inside the transfer aisle at the Vehicle Assembly building at NASA’s Kennedy Space Center in Florida on Tuesday, Dec. 10, 2024. The one-of-a kind lifting beam is designed to move the core stage from the transfer aisle to High Bay 2 where it will remain while teams stack the two solid rocket boosters for the SLS core stage. NASA/Adeline Morgan NASA’s SLS (Space Launch System) Moon rocket core stage is vertical in High Bay 2 on Tuesday, Dec. 10, 2024, inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida.
      The core stage arrived on July 23 to NASA Kennedy, where it remained horizontal inside the facility’s transfer aisle. With the move to High Bay 2, technicians with NASA and Boeing now have 360-degree access to the core stage both internally and externally. The move also frees up more space in the transfer aisle to allow technicians to continue transporting and integrating two solid rocket boosters onto mobile launcher 1 in High Bay 3 for the Artemis II mission. Boeing and their sub-contractor Futuramic refurbished High Bay 2 to increase efficiencies while processing core stages for Artemis II and beyond.
      During Apollo, technicians stacked the Saturn V rocket in High Bay 2. During the Space Shuttle Program, the high bay was used for external tank checkout and storage and as a contingency storage area for the shuttle. The Artemis II test flight will be NASA’s first mission with crew under the Artemis campaign, sending NASA astronauts Victor Glover, Christina Koch, and Reid Wiseman, as well as CSA (Canadian Space Agency) astronaut Jeremy Hansen, on a 10-day journey around the Moon and back.
      Image credit: NASA/Adeline Morgan
      View the full article
    • By NASA
      3 Min Read They Grow So Fast: Moon Tree Progress Since NASA’s Artemis I Mission
      In the two years since NASA’s Orion spacecraft returned to Earth with more than 2,000 tree seedlings sourced in a partnership with USDA Forest Service, Artemis I Moon trees have taken root at 236 locations across the contiguous United States. Organizations are cultivating more than just trees, as they nurture community connections, spark curiosity about space, and foster a deeper understanding of NASA’s missions.
      Universities, federal agencies, museums, and other organizations who were selected to be Moon tree recipients have branched out to provide their community unique engagements with their seedling.
      Children sitting in a circle around a newly planted Moon tree and learning about NASA’s Artemis I mission. Adria Gillespie “Through class visits to the tree, students have gained a lot of interest in caring for the tree, and their curiosity for the unknown in outer space sparked them to do research of their own to get answers to their inquiries,” said Adria Gillespie, the district science coach at Greenfield Union School District in Greenfield, California.
      The presence of a Moon tree at schools has blossomed into more student engagements surrounding NASA’s missions. Along with planting their American Sycamore, students from Eagle Pointe Elementary in Plainfield, Illinois, are participating in a Lunar Quest club to learn about NASA and engage in a simulated field trip to the Moon.
      Eagle Pointe Elementary students also took part in a planting ceremony for their seedling, where they buried a time capsule with the seed, and established a student committee responsible for caring for their Moon tree.
      At Marshall STEMM Academy in Toledo, Ohio, second grade students were assigned reading activities associated with their Moon tree, fourth graders created Moon tree presentations to show the school, and students engaged with city leaders and school board members to provide a Moon tree dedication.
      Two individuals planting a Moon tree. Brandon Dillman A seedling sent to The Gathering Garden in Mount Gilead, North Carolina, is cared for by community volunteers. Lessons with local schools and 4-H clubs, as well as the establishment of newsletters and social media to maintain updates, have sprouted from The Gathering Garden’s Loblolly Pine.
      Sprucing Up the Moon Trees’ Environment
      In addition to nurturing their Moon tree, many communities have planted other trees alongside their seedling to foster a healthier environment. In Castro Valley, California, a non-profit called ForestR planted oak, fir, and sequoia trees to nestle their seedling among a tree “family.”
      New homes for additional Moon tree seedlings are being identified each season through Fall 2025. Communities continue to track how the impact of NASA’s science and innovation grows alongside their Moon trees.
      NASA’s “new generation” Moon trees originally blossomed from NASA’s Apollo 14 mission, where NASA astronaut Stuart Roosa carried tree seeds into lunar orbit. NASA’s Next Generation STEM project partnered with USDA Forest Service to bring Moon trees to selected organizations. As NASA continues to work for the benefit of all, its Moon trees have demonstrated how one tiny seed can sprout positive change for communities, the environment, and education.
      Learn more about NASA’s STEM engagements: https://stem.nasa.gov
      Keep Exploring Discover More Topics From NASA
      NASA STEM Artemis Moon Trees
      ARTEMIS I
      Outside the Classroom
      For Kids and Students
      View the full article
    • By NASA
      As part of NASA’s CLPS (Commercial Lunar Payload Services) initiative and Artemis campaign, Firefly Aerospace’s Blue Ghost Mission One lander will carry 10 NASA science and technology instruments to the Moon’s near side.
      Credit: Firefly Aerospace
      NASA will host a media teleconference at 1 p.m. EST Tuesday, Dec. 17, to discuss the agency science and technology flying aboard Firefly Aerospace’s first delivery to the Moon as part of the NASA’s CLPS (Commercial Lunar Payload Services) initiative and Artemis campaign. 

      Audio of the call will livestream on the agency’s website at:
      https://www.nasa.gov/live
      Briefing participants include:
      Joel Kearns, deputy associate administrator for exploration, Science Mission Directorate, NASA Headquarters Ryan Watkins, program scientist, Exploration Science Strategy and Integration Office, NASA Headquarters Jason Kim, chief executive officer, Firefly Aerospace
      To participate by telephone, media must RSVP no later than two hours before the briefing to: ksc-newsroom@mail.nasa.gov.

      Firefly’s Blue Ghost lunar lander will launch on a SpaceX Falcon 9 rocket from Launch Complex 39A at NASA’s Kennedy Space Center in Florida. The six-day launch window opens no earlier than mid-January 2025.

      The lunar mission, named Ghost Riders in the Sky, will land near a volcanic feature called Mons Latreille within Mare Crisium, a more than 300-mile-wide basin located in the northeast quadrant of the Moon’s near side. The mission will carry 10 NASA instruments and first-of-their-kind demonstrations to further our understanding of the Moon’s environment and help prepare for future human missions to the lunar surface, as part of the agency’s Moon to Mars exploration approach.  
      Science investigations on this flight include testing lunar subsurface drilling, regolith sample collection, global navigation satellite system abilities, radiation tolerant computing, and lunar dust mitigation. The data captured could also benefit humans on Earth by providing insights into how space weather and other cosmic forces impact Earth.

      Under the CLPS model, NASA is investing in commercial delivery services to the Moon to enable industry growth and support long-term lunar exploration. As a primary customer for CLPS deliveries, NASA is to be one of many customers on future flights.

      For updates, follow on:
      https://blogs.nasa.gov/artemis/
      -end-

      Alise Fisher
      Headquarters, Washington
      202-358-2546
      alise.m.fisher@nasa.gov   

      Wynn Scott / Natalia Riusech
      Johnson Space Center, Houston
      281-483-5111
      wynn.b.scott@nasa.gov / nataila.s.riusech@nasa.gov

      Antonia Jaramillo
      Kennedy Space Center, Florida
      321-867-2468
      antonia.jaramillobotero@nasa.gov
      Share
      Details
      Last Updated Dec 10, 2024 LocationNASA Headquarters Related Terms
      Missions Artemis Commercial Lunar Payload Services (CLPS)
      View the full article
    • By NASA
      On Thursday, Dec. 5, 2024, a team returns the Artemis II Orion spacecraft to the Final Assembly and Test cell from a vacuum chamber inside the Neil A. Armstrong Operations and Checkout Building at NASA’s Kennedy Space Center in Florida where it underwent vacuum testing. NASA/Eric Hernandez NASA’s Orion spacecraft for the Artemis II test flight returned to the Final Assembly and System Testing (FAST) cell following completion of the second round of vacuum chamber testing on Dec. 5 inside the Neil A. Armstrong Operations and Checkout Building at NASA’s Kennedy Space Center in Florida.
      After returning to the FAST cell, the four main batteries – which supply power to many Orion systems – were installed in the crew module. The batteries returned to NASA Kennedy from their supplier, EaglePicher Technologies, earlier this month. Solar array wings will also be installed onto the spacecraft by international partner ESA (European Space Agency) and its contractor Airbus in early 2025.
      The Artemis II test flight will be NASA’s first mission with crew under the Artemis campaign, sending NASA astronauts Reid Wiseman, Victor Glover, and Christina Koch, as well as CSA (Canadian Space Agency) astronaut Jeremy Hansen, on a 10-day journey around the Moon and back.
      Image credit: NASA/Eric Hernandez
      View the full article
    • By NASA
      Se espera que Panamá y Austria firmen los Acuerdos de Artemis el miércoles 11 de diciembre de 2024, con lo cual se alcanzarán los 50 signatarios. Los compromisos de los Acuerdos de Artemis y los esfuerzos de los firmantes por avanzar en la implementación de estos principios fomentan la exploración segura y sostenible del espacio.Crédito: NASA Read this release in English here.
      El miércoles 11 de diciembre, Panamá y Austria firmarán los Acuerdos de Artemis en la sede de la NASA en Washington. Tras las ceremonias de firma, el administrador de la NASA, Bill Nelson, se reunirá con los medios de comunicación para destacar avances de los acuerdos, entre ellos el haber alcanzado los 50 signatarios.
      Los actos comenzarán a las siguientes horas:
      11 a.m. hora del este (EST) – Nelson recibirá a José Miguel Alemán Healy, embajador de la República de Panamá en Estados Unidos, y a funcionarios del Departamento de Estado de EE.UU. para la ceremonia de firma de Panamá. 2 p.m. – Nelson recibirá a Petra Schneebauer, embajadora de la República de Austria en Estados Unidos, y a funcionarios del Departamento de Estado para la ceremonia de firma del acuerdo con Austria.
      2:30 p.m. – Nelson tendrá disponibilidad para los medios de comunicación para hablar sobre los Acuerdos de Artemis. Todos los eventos son presenciales. Los medios de comunicación interesados en asistir a los mismos deberán confirmar su participación antes de las 5 p.m. del martes 10 de diciembre a: hq-media@mail.nasa.gov. La política de acreditación de medios de comunicación de la NASA está disponible en línea (en inglés).
      Estados Unidos, liderado por la NASA con el Departamento de Estado, y otros siete países signatarios iniciales, establecieron los Acuerdos de Artemis en 2020, identificando un conjunto de principios que promueven el uso beneficioso del espacio para la humanidad. A fecha de hoy, 48 países han firmado los Acuerdos de Artemis, 39 de ellos durante la Administración Biden-Harris, incluyendo 15 nuevos firmantes en 2024.
      Los Acuerdos de Artemis se basan en el Tratado sobre el espacio ultraterrestre y en otros acuerdos, como el Convenio sobre registro, el Acuerdo sobre rescate y retorno, así como en las mejores prácticas y normas de comportamiento responsable que la NASA y sus socios han respaldado, incluida la divulgación pública de datos científicos.
      Las ceremonias tendrán lugar en el Auditorio James E. Webb de la agencia, situado en el vestíbulo oeste de la sede central de la NASA, en el edificio Mary W. Jackson, 300 E St. SW, en Washington.
      Más información (en inglés) sobre los Acuerdos de Artemis en:
      https://www.nasa.gov/artemis-accords
      -fin-
      Meira Bernstein / Elizabeth Shaw / María José Viñas
      Sede, Washington
      202-358-1600
      meira.b.bernstein@nasa.gov / elizabeth.a.shaw@nasa.gov / maria-jose.vinasgarcia@nasa.gov
      Share
      Details
      Last Updated Dec 09, 2024 LocationNASA Headquarters Related Terms
      Artemis Accords NASA Headquarters Office of International and Interagency Relations (OIIR) View the full article
  • Check out these Videos

×
×
  • Create New...