Members Can Post Anonymously On This Site
NASA Awards University Research Projects to Support Agency Missions
-
Similar Topics
-
By NASA
1 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
Fans at the 51st Annual Bayou Classic in New Orleans snap a photo with cardboard images of NASA’s Artemis II crew on Nov. 30. NASA/Danny Nowlin NASA was on full display during the 51st Annual Bayou Classic Fan Fest activity on Nov. 30, hosting an informational booth and interacting with event participants. Kicking off the Fan Fest on stage were Ken Newton, director of the NASA Shared Services Center Service Delivery Directorate; Pam Covington, director of the NASA Stennis Office of Communications; and Dawn Davis, chief of the NASA Stennis Engineering & Test Directorate Office of Technology Development.
NASA representatives, including HBCU alumni, supported the morning-long event, providing Fan Fest attendees with promotional items and information about student internship and employment opportunities with the agency.
The annual Bayou Classic event attracts tens of thousands of visitors each year and features several days of activities, including a nationally broadcast football game, involving two Historically Black Colleges and Universities in Louisiana – Southern University in Baton Rouge and Grambling State University in Grambling.
The NASA outreach and engagement effort during this year’s event focused on the theme – There’s Space for Everybody at NASA. It was part of an ongoing agencywide commitment to advance equity and reach deeper into underrepresented and underserved segments of society and was in support of efforts to advance racial equity in the federal government.
NASA at the Bayou Classic Fan Fest video View the full article
-
By NASA
9 Min Read Towards Autonomous Surface Missions on Ocean Worlds
Artist’s concept image of a spacecraft lander with a robot arm on the surface of Europa. Credits:
NASA/JPL – Caltech Through advanced autonomy testbed programs, NASA is setting the groundwork for one of its top priorities—the search for signs of life and potentially habitable bodies in our solar system and beyond. The prime destinations for such exploration are bodies containing liquid water, such as Jupiter’s moon Europa and Saturn’s moon Enceladus. Initial missions to the surfaces of these “ocean worlds” will be robotic and require a high degree of onboard autonomy due to long Earth-communication lags and blackouts, harsh surface environments, and limited battery life.
Technologies that can enable spacecraft autonomy generally fall under the umbrella of Artificial Intelligence (AI) and have been evolving rapidly in recent years. Many such technologies, including machine learning, causal reasoning, and generative AI, are being advanced at non-NASA institutions.
NASA started a program in 2018 to take advantage of these advancements to enable future icy world missions. It sponsored the development of the physical Ocean Worlds Lander Autonomy Testbed (OWLAT) at NASA’s Jet Propulsion Laboratory in Southern California and the virtual Ocean Worlds Autonomy Testbed for Exploration, Research, and Simulation (OceanWATERS) at NASA’s Ames Research Center in Silicon Valley, California.
NASA solicited applications for its Autonomous Robotics Research for Ocean Worlds (ARROW) program in 2020, and for the Concepts for Ocean worlds Life Detection Technology (COLDTech) program in 2021. Six research teams, based at universities and companies throughout the United States, were chosen to develop and demonstrate autonomy solutions on OWLAT and OceanWATERS. These two- to three-year projects are now complete and have addressed a wide variety of autonomy challenges faced by potential ocean world surface missions.
OWLAT
OWLAT is designed to simulate a spacecraft lander with a robotic arm for science operations on an ocean world body. The overall OWLAT architecture including hardware and software components is shown in Figure 1. Each of the OWLAT components is detailed below.
Figure 1. The software and hardware components of the Ocean Worlds Lander Autonomy Testbed and the relationships between them. NASA/JPL – Caltech The hardware version of OWLAT (shown in Figure 2) is designed to physically simulate motions of a lander as operations are performed in a low-gravity environment using a six degrees-of-freedom (DOF) Stewart platform. A seven DOF robot arm is mounted on the lander to perform sampling and other science operations that interact with the environment. A camera mounted on a pan-and-tilt unit is used for perception. The testbed also has a suite of onboard force/torque sensors to measure motion and reaction forces as the lander interacts with the environment. Control algorithms implemented on the testbed enable it to exhibit dynamics behavior as if it were a lightweight arm on a lander operating in different gravitational environments.
Figure 2. The Ocean Worlds Lander Autonomy Testbed. A scoop is mounted to the end of the testbed robot arm. NASA/JPL – Caltech The team also developed a set of tools and instruments (shown in Figure 3) to enable the performance of science operations using the testbed. These various tools can be mounted to the end of the robot arm via a quick-connect-disconnect mechanism. The testbed workspace where sampling and other science operations are conducted incorporates an environment designed to represent the scene and surface simulant material potentially found on ocean worlds.
Figure 3. Tools and instruments designed to be used with the testbed. NASA/JPL – Caltech The software-only version of OWLAT models, visualizes, and provides telemetry from a high-fidelity dynamics simulator based on the Dynamics And Real-Time Simulation (DARTS) physics engine developed at JPL. It replicates the behavior of the physical testbed in response to commands and provides telemetry to the autonomy software. A visualization from the simulator is shown on Figure 4.
To view this video please enable JavaScript, and consider upgrading to a web browser that
supports HTML5 video
Figure 7. Screenshot of OceanWATERS lander on a terrain modeled from the Atacama Desert. A scoop operation has just been completed. NASA/JPL – Caltech The autonomy software module shown at the top in Figure 1 interacts with the testbed through a Robot Operating System (ROS)-based interface to issue commands and receive telemetry. This interface is defined to be identical to the OceanWATERS interface. Commands received from the autonomy module are processed through the dispatcher/scheduler/controller module (blue box in Figure 1) and used to command either the physical hardware version of the testbed or the dynamics simulation (software version) of the testbed. Sensor information from the operation of either the software-only or physical testbed is reported back to the autonomy module using a defined telemetry interface. A safety and performance monitoring and evaluation software module (red box in Figure 1) ensures that the testbed is kept within its operating bounds. Any commands causing out of bounds behavior and anomalies are reported as faults to the autonomy software module.
Figure 5. Erica Tevere (at the operator’s station) and Ashish Goel (at the robot arm) setting up the OWLAT testbed for use. NASA/JPL – Caltech OceanWATERS
At the time of the OceanWATERS project’s inception, Jupiter’s moon Europa was planetary science’s first choice in searching for life. Based on ROS, OceanWATERS is a software tool that provides a visual and physical simulation of a robotic lander on the surface of Europa (see Figure 6). OceanWATERS realistically simulates Europa’s celestial sphere and sunlight, both direct and indirect. Because we don’t yet have detailed information about the surface of Europa, users can select from terrain models with a variety of surface and material properties. One of these models is a digital replication of a portion of the Atacama Desert in Chile, an area considered a potential Earth-analog for some extraterrestrial surfaces.
Figure 6. Screenshot of OceanWATERS. NASA/JPL – Caltech JPL’s Europa Lander Study of 2016, a guiding document for the development of OceanWATERS, describes a planetary lander whose purpose is collecting subsurface regolith/ice samples, analyzing them with onboard science instruments, and transmitting results of the analysis to Earth.
The simulated lander in OceanWATERS has an antenna mast that pans and tilts; attached to it are stereo cameras and spotlights. It has a 6 degree-of-freedom arm with two interchangeable end effectors—a grinder designed for digging trenches, and a scoop for collecting ground material. The lander is powered by a simulated non-rechargeable battery pack. Power consumption, the battery’s state, and its remaining life are regularly predicted with the Generic Software Architecture for Prognostics (GSAP) tool. To simulate degraded or broken subsystems, a variety of faults (e.g., a frozen arm joint or overheating battery) can be “injected” into the simulation by the user; some faults can also occur “naturally” as the simulation progresses, e.g., if components become over-stressed. All the operations and telemetry (data measurements) of the lander are accessible via an interface that external autonomy software modules can use to command the lander and understand its state. (OceanWATERS and OWLAT share a unified autonomy interface based on ROS.) The OceanWATERS package includes one basic autonomy module, a facility for executing plans (autonomy specifications) written in the PLan EXecution Interchange Language, or PLEXIL. PLEXIL and GSAP are both open-source software packages developed at Ames and available on GitHub, as is OceanWATERS.
Mission operations that can be simulated by OceanWATERS include visually surveying the landing site, poking at the ground to determine its hardness, digging a trench, and scooping ground material that can be discarded or deposited in a sample collection bin. Communication with Earth, sample analysis, and other operations of a real lander mission, are not presently modeled in OceanWATERS except for their estimated power consumption. Figure 7 is a video of OceanWATERS running a sample mission scenario using the Atacama-based terrain model.
To view this video please enable JavaScript, and consider upgrading to a web browser that
supports HTML5 video
Figure 7. Screenshot of OceanWATERS lander on a terrain modeled from the Atacama Desert. A scoop operation has just been completed. NASA/JPL – Caltech Because of Earth’s distance from the ocean worlds and the resulting communication lag, a planetary lander should be programmed with at least enough information to begin its mission. But there will be situation-specific challenges that will require onboard intelligence, such as deciding exactly where and how to collect samples, dealing with unexpected issues and hardware faults, and prioritizing operations based on remaining power.
Results
All six of the research teams funded by the ARROW and COLDTech programs used OceanWATERS to develop ocean world lander autonomy technology and three of those teams also used OWLAT. The products of these efforts were published in technical papers, and resulted in development of software that may be used or adapted for actual ocean world lander missions in the future. The following table summarizes the ARROW and COLDTech efforts.
Principal Investigator (PI) PI Institution Project Testbed Used Purpose of Project ARROW Projects Jonathan Bohren Honeybee Robotics Stochastic PLEXIL (SPLEXIL) OceanWATERS Extended PLEXIL with stochastic decision-making capabilities by employing reinforcement learning techniques. Pooyan Jamshidi University of South Carolina Resource Adaptive Software Purpose-Built for Extraordinary Robotic Research Yields (RASPBERRY SI) OceanWATERS & OWLAT Developed software algorithms and tools for fault root cause identification, causal debugging, causal optimization, and causal-induced verification. COLDTech Projects Eric Dixon Lockheed Martin Causal And Reinforcement Learning (CARL) for COLDTech OceanWATERS Integrated a model of JPL’s mission-ready Cold Operable Lunar Deployable Arm (COLDarm) into OceanWATERS and applied image analysis, causal reasoning, and machine learning models to identify and mitigate the root causes of faults, such as ice buildup on the arm’s end effector. Jay McMahon University of Colorado Robust Exploration with Autonomous Science On-board, Ranked Evaluation of Contingent Opportunities for Uninterrupted Remote Science Exploration (REASON-RECOURSE) OceanWATERS Applied automated planning with formal methods to maximize science return of the lander while minimizing communication with ground team on Earth. Melkior Ornik U Illinois, Urbana-Champaign aDaptive, ResIlient Learning-enabLed oceAn World AutonomY (DRILLAWAY) OceanWATERS & OWLAT Developed autonomous adaptation to novel terrains and selecting scooping actions based on the available image data and limited experience by transferring the scooping procedure learned from a low-fidelity testbed to the high-fidelity OWLAT testbed. Joel Burdick Caltech Robust, Explainable Autonomy for Scientific Icy Moon Operations (REASIMO) OceanWATERS & OWLAT Developed autonomous 1) detection and identification of off-nominal conditions and procedures for recovery from those conditions, and 2) sample site selection Acknowledgements: The portion of the research carried out at the Jet Propulsion Laboratory, California Institute of Technology was performed under a contract with the National Aeronautics and Space Administration (80NM0018D0004). The portion of the research carried out by employees of KBR Wyle Services LLC at NASA Ames Research Center was performed under a contract with the National Aeronautics and Space Administration (80ARC020D0010). Both were funded by the Planetary Science Division ARROW and COLDTech programs.
Project Leads: Hari Nayar (NASA Jet Propulsion Laboratory, California Institute of Technology), K. Michael Dalal (KBR, Inc. at NASA Ames Research Center)
Sponsoring Organizations: NASA SMD PESTO
View the full article
-
By NASA
Scientists find that cometary dust affects interpretation of spacecraft measurements, reopening the case for comets like 67P as potential sources of water for early Earth.
Researchers have found that water on Comet 67P/Churyumov–Gerasimenko has a similar molecular signature to the water in Earth’s oceans. Contradicting some recent results, this finding reopens the case that Jupiter-family comets like 67P could have helped deliver water to Earth.
Water was essential for life to form and flourish on Earth and it remains central for Earth life today. While some water likely existed in the gas and dust from which our planet materialized around 4.6 billion years ago, much of the water would have vaporized because Earth formed close to the Sun’s intense heat. How Earth ultimately became rich in liquid water has remained a source of debate for scientists.
Research has shown that some of Earth’s water originated through vapor vented from volcanoes; that vapor condensed and rained down on the oceans. But scientists have found evidence that a substantial portion of our oceans came from the ice and minerals on asteroids, and possibly comets, that crashed into Earth. A wave of comet and asteroid collisions with the solar system’s inner planets 4 billion years ago would have made this possible.
This image, taken by ESA’s Rosetta navigation camera, was taken from a about 53 miles from the center of Comet 67P/Churyumov-Gerasimenko on March 14, 2015. The image resolution is 24 feet per pixel and is cropped and processed to bring out the details of the comet’s activity. ESA/Rosetta/NAVCAM While the case connecting asteroid water to Earth’s is strong, the role of comets has puzzled scientists. Several measurements of Jupiter-family comets — which contain primitive material from the early solar system and are thought to have formed beyond the orbit of Saturn — showed a strong link between their water and Earth’s. This link was based on a key molecular signature scientists use to trace the origin of water across the solar system.
This signature is the ratio of deuterium (D) to regular hydrogen (H) in the water of any object, and it gives scientists clues about where that object formed. Deuterium is a rare, heavier type — or isotope — of hydrogen. When compared to Earth’s water, this hydrogen ratio in comets and asteroids can reveal whether there’s a connection.
Because water with deuterium is more likely to form in cold environments, there’s a higher concentration of the isotope on objects that formed far from the Sun, such as comets, than in objects that formed closer to the Sun, like asteroids.
Measurements within the last couple of decades of deuterium in the water vapor of several other Jupiter-family comets showed similar levels to Earth’s water.
“It was really starting to look like these comets played a major role in delivering water to Earth,” said Kathleen Mandt, planetary scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Mandt led the research, published in Science Advances on Nov. 13, that revises the abundance of deuterium in 67P.
About Kathleen Mandt
But in 2014, ESA’s (European Space Agency) Rosetta mission to 67P challenged the idea that Jupiter-family comets helped fill Earth’s water reservoir. Scientists who analyzed Rosetta’s water measurements found the highest concentration of deuterium of any comet, and about three times more deuterium than there is in Earth’s oceans, which have about 1 deuterium atom for every 6,420 hydrogen atoms.
“It was a big surprise and it made us rethink everything,” Mandt said.
Mandt’s team decided to use an advanced statistical-computation technique to automate the laborious process of isolating deuterium-rich water in more than 16,000 Rosetta measurements. Rosetta made these measurements in the “coma” of gas and dust surrounding 67P. Mandt’s team, which included Rosetta scientists, was the first to analyze all of the European mission’s water measurements spanning the entire mission.
The researchers wanted to understand what physical processes caused the variability in the hydrogen isotope ratios measured at comets. Lab studies and comet observations showed that cometary dust could affect the readings of the hydrogen ratio that scientists detect in comet vapor, which could change our understanding of where comet water comes from and how it compares to Earth’s water.
What are comets made of? It’s one of the questions ESA’s Rosetta mission to comet 67P/Churyumov-Gerasimenko wanted to answer. “So I was just curious if we could find evidence for that happening at 67P,” Mandt said. “And this is just one of those very rare cases where you propose a hypothesis and actually find it happening.”
Indeed, Mandt’s team found a clear connection between deuterium measurements in the coma of 67P and the amount of dust around the Rosetta spacecraft, showing that the measurements taken near the spacecraft in some parts of the coma may not be representative of the composition of a comet’s body.
As a comet moves in its orbit closer to the Sun, its surface warms up, causing gas to release from the surface, including dust with bits of water ice on it. Water with deuterium sticks to dust grains more readily than regular water does, research suggests. When the ice on these dust grains is released into the coma, this effect could make the comet appear to have more deuterium than it has.
Mandt and her team reported that by the time dust gets to the outer part of the coma, at least 75 miles from the comet body, it is dried out. With the deuterium-rich water gone, a spacecraft can accurately measure the amount of deuterium coming from the comet body.
This finding, the paper authors say, has big implications not only for understanding comets’ role in delivering Earth’s water, but also for understanding comet observations that provide insight into the formation of the early solar system.
“This means there is a great opportunity to revisit our past observations and prepare for future ones so we can better account for the dust effects,” Mandt said.
By Lonnie Shekhtman
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Explore More
9 min read Towards Autonomous Surface Missions on Ocean Worlds
Article
31 mins ago
1 min read Coming Spring 2025: Planetary Defenders Documentary
ow would humanity respond if we discovered an asteroid headed for Earth? NASA’s Planetary Defenders…
Article
52 mins ago
5 min read What’s Up: December 2024 Skywatching Tips from NASA
Article
1 day ago
Share
Details
Last Updated Dec 03, 2024 Editor Lonnie Shekhtman Contact Lonnie Shekhtman lonnie.shekhtman@nasa.gov Location Goddard Space Flight Center Related Terms
Comets Goddard Space Flight Center Planetary Science Planetary Science Division Rosetta Science Mission Directorate The Solar System View the full article
-
By NASA
3 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
A group of middle school students engage with a model aircraft while learning from NASA experts in the model lab at NASA’s Armstrong Flight Research Center in Edwards, California during an event hosted by NASA’s California Office of STEM Engagement.NASA/Steve Freeman In celebration of National Aviation History Month, experts from NASA’s Armstrong Flight Research Center in Edwards, California, spoke with middle school students during a recent event hosted by NASA’s California Office of STEM Engagement. NASA Armstrong employees shared stories about the center’s role in aviation history and current research projects while also talking about their own paths to working at NASA. During the virtual and in-person event on Nov. 6, Southern California middle school students were presented with the importance of pursing their passions, the value of internships and exploring diverse career opportunities within NASA.
Kicking off the event, NASA Armstrong Center Director Brad Flick talked about his journey from a small town to becoming a NASA engineer. “I never, in my wildest dreams thought I had the opportunity to work for someplace like NASA,” Flick said. “I’ve been here for almost 40 years and at a little part of NASA that most people don’t know exists, right? Which is really cool that we’re tying this to aviation history month, because this is one of the places where aviation history has been made, is being made and will continue to be made.” Flick encouraged students to participate in STEAM programs that integrate the arts with science, technology, engineering, and math and stressed the importance of asking questions and being curious.
A panel of four NASA Armstrong experts – Laurie Grindle, deputy center director; Troy Asher, director of Flight Operations; Nicki Reid, lead operations engineer; and Julio Trevino, operations engineer – shared their stories about their career paths and experiences at NASA.
NASA Armstrong experts share their stories about their career paths and experiences at NASA to middle school students during an event hosted by NASA’s California Office of STEM Engagement at NASA’s Armstrong Flight Research Center in Edwards, California. From left to right: Laurie Grindle, Julio Trevino, Nicki Reid and Troy Asher.NASA/Steve Freeman Reid talked about her initial struggle with math and science and how it didn’t stop her from obtaining an engineering degree and applying for internships, which is what ultimately opened the door for her at NASA. “It was a really cool experience because it gives you a chance to decide whether or not you like the job and I got to learn from different people every summer,” Reid said.
Grindle’s dream as a kid was to become an astronaut and although did not happen for her, her interest in aviation and space continued, which ultimately led to working at NASA as a student. “I had a lot of different opportunities working in different roles. I had fun while doing it and did a job I really enjoyed that made it not like work,” Grindle said.
For Asher, determination and commitment helped him become a pilot. “I remember sitting in the back seat of the airplane, looking out and thinking, ‘I love this. I’m doing this forever,’” Asher said. “But it took me five or six years before I had that moment, and it was the commitment the kept me going.”
A group of middle school students and their teachers sit in the control room for a hands-on experience at NASA’s Armstrong Flight Research Center in Edwards, California during an event hosted by NASA’s California Office of STEM Engagement for National Aviation History Month.NASA/Steve Freeman Stories and experiences like these are important for students to hear to inspire them in their own journeys into adulthood. Students also received tours around the center with stops in the model lab, life support office and control room.
“This was a wonderful opportunity for my seventh-grade students to learn more about careers and career paths in NASA,” said Shauna Tinich, Tropico Middle School teacher. “They were surprised that people other than astronauts and rocket scientists work for NASA, and this excited many of my students.”
NASA’s California Office of STEM Engagement collaborates with the regional STEM community to provide opportunities like these, with the support of Next Gen STEM, to help students in sparking their interest and inspiring the next generation of leaders. To learn more, visit www.nasa.gov/learning-resources.
Share
Details
Last Updated Dec 02, 2024 EditorDede DiniusContactElena Aguirreelena.aguirre@nasa.govLocationArmstrong Flight Research Center Related Terms
Armstrong Flight Research Center Aeronautics Learning Resources Next Gen STEM STEM Engagement at NASA Explore More
4 min read Aaron Yazzie: Bridging Indigenous Heritage and Space Exploration
Article 5 days ago 2 min read Why NASA Is a Great Place to Launch Your Career
Article 1 week ago 3 min read Northwestern University Takes Top Honors in BIG Idea Lunar Inflatables Challenge
Article 2 weeks ago Keep Exploring Discover More Topics From NASA
Armstrong Flight Research Center
Learning Resources
Armstrong People
Armstrong Flight Research Center History
View the full article
-
By NASA
Dec. 2, 2024
NASA astronauts Matthew Dominick, Mike Barratt, Jeanette Epps, and Tracy C. DysonNASA RELEASE: J24-015
Expedition 71 Astronauts to Discuss Mission in NASA Welcome Home Event
Four NASA astronauts will participate in a welcome home ceremony at Space Center Houston after recently returning from a mission aboard the International Space Station.
NASA astronauts Matthew Dominick, Mike Barratt, Jeanette Epps, and Tracy C. Dyson will share highlights from their mission beginning at 6 p.m. CST Wednesday, Dec. 4, during a free, public event at NASA Johnson Space Center’s official visitor center. The crew will also recognize key contributors to mission success in an awards ceremony following the presentation.
The astronauts will be available at 5 p.m. for media interviews before the event. Media may request an in-person interview no later than 5 p.m. Tuesday, Dec. 3, by emailing Dana Davis at dana.l.davis@nasa.gov.
Expedition 71
NASA’s SpaceX Crew-8 mission launched to the space station in March 2024 as the eighth commercial crew rotation mission. The crew spent 235 days in space, traveled 100 million miles, and completed 3,760 orbits around the Earth, splashing down off the coast of Pensacola, Florida, on Oct. 25, 2024. This was the first spaceflight for Dominick and Epps and the third spaceflight for Barratt, who has logged 447 days in space over the course of his career. The crew also saw the arrival and departure of eight visiting vehicles during their mission.
Dyson flew with an international crew, launching aboard the Soyuz MS-25 in March 2024. The six-month research mission was the third spaceflight of her career, and her second long-duration spaceflight. Dyson’s third spaceflight covered 2,944 orbits of the Earth and a journey of 78 million miles as an Expedition 70/71 flight engineer. She has now logged a total of 373 days in space, including more than 23 hours in four spacewalks. Dyson and her crewmembers landed safely in Kazakhstan on Sept. 24, 2024.
While aboard the station, the Expedition 71 crew contributed to hundreds of technology demonstrations and experiments including the bioprinting of human tissues. These higher quality tissues printed in microgravity could help advance the production of organs and tissues for transplant and improve 3D printing of foods and medicines on future long-duration space missions. The crew also looked at neurological organoids, created with stem cells from patients to study neuroinflammation, a common feature of neurodegenerative conditions such as Parkinson’s disease. The organoids provide a platform to study these diseases and their treatments and could help address how extended spaceflight affects the brain.
Stay current on space station activities by following @space_station and @ISS_Research on X, as well as the station Facebook and Instagram accounts and the space station blog.
-end-
Jaden Jennings
Johnson Space Center, Houston
713-281-0984
jaden.r.jennings@nasa.gov
Dana Davis
Johnson Space Center, Houston
281-244-0933
dana.l.davis@nasa.gov
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.