Jump to content

Giant beings might still reside underground today!


Recommended Posts

The notion that giants once roamed the earth has been widely discussed and supported by photographs of their skulls and skeletons found worldwide. 

Ancient megalithic structures, enormous and enigmatic, prompt us to question their builders. It seems impossible that human beings could have constructed such structures. 

giants%20malta%20nephilim.jpg

Take, for instance, the colossal stones of Sacsayhuamán in Peru. When The conquistadors asked theInca about the walls at Sacsayjuaman, the Inca told them the Giants had built it. 

Similarly, Malta, an island steeped in history and legend, houses mysterious megalithic structures that have baffled archaeologists for centuries. These massive stone temples, among the oldest globally, appear beyond the capabilities of prehistoric farmers. 

However, the intrigue doesn't stop there.

Legends speak of the Nephilim, giant beings believed to have built these monumental structures. Some theories even suggest their descendants might still reside underground today. 

We investigate the possibility of these giants, examining bones, elongated skulls, and mysterious hidden subterranean chambers called The Hypogeum.

 

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      The LZR Racer reduces skin friction drag by covering more skin than traditional swimsuits. Multiple pieces of the water-resistant and extremely lightweight LZR Pulse fabric connect at ultrasonically welded seams and incorporate extremely low-profile zippers to keep viscous drag to a minimum.Credit: SpeedoUSA A supersonic airplane and a competitive swimmer have much more in common than people might realize; both have to contend with the slowing influence of drag. NASA’s Aeronautics Research Mission Directorate focuses primarily on improving flight efficiency and fluid dynamics, especially the forces of pressure and drag, which are the same for bodies moving through air as for bodies moving through water. Shortly after the 2004 Olympics, Los Angeles-based SpeedoUSA, also known as Speedo, asked NASA’s Langley Research Center to help design a swimsuit with reduced surface drag. The manufacturer sought a partnership with NASA because of the agency’s expertise in fluid dynamics.

      In competitive swimming, where every hundredth of a second counts, achieving the best possible drag reduction is crucially important. Researchers at NASA began flat plate testing of fabrics, using a small wind tunnel developed for earlier research on low-speed viscous drag reduction and collaborated over the next few years with Speedo to design the LZR Racer swimsuit.

      Researcher Corey Diebler inspects a model of the supersonic X-59 after a test in Langley Research Center’s 12 foot wind tunnel. Wind tunnel testing at Langley enabled Speedo’s LZR Racer to achieve its excellent underwater performance.NASA/David C. Bowman. NASA and Speedo performed tests on traditionally sewn seams, ultrasonically welded seams, and the fabric alone, which gave Speedo a baseline for reducing drag caused by seams and helped identify problem areas. NASA wind tunnel results helped Speedo create a bonding system that eliminates seams and reduces drag. The results also showed that a low-profile zipper ultrasonically bonded into the fabric inside the suit generated eight percent less drag in wind tunnel tests than a standard zipper. Low-profile seams and zippers were a crucial component in the LZR Racer, because the suit consists of multiple connecting fabric pieces—instead of just a few sewn pieces such as found in traditional suits—that provide extra compression for maximum efficiency.

      In March 2008, the LZR Racer made its mark on the world of competitive swimming. Athletes donning this innovative swimsuit shattered 13 world records, a testament to the power of collaboration between NASA and Speedo. While the original LZR Racer is no longer used in competition because of the advantage it gave wearers, its legacy lives on in today’s swimsuits approved by World Aquatics, the governing body for international competitive swimming. 
      Read More Share
      Details
      Last Updated Jul 25, 2024 Related Terms
      Technology Transfer & Spinoffs Langley Research Center Spinoffs Technology Transfer Explore More
      2 min read Tech Today: NASA’s Moonshot Launched Commercial Fuel Cell Industry 
      Agency’s technology development prepared fuel cells for tomorrow’s renewable energy grids
      Article 1 week ago 2 min read NASA Prepares for Air Taxi Passenger Comfort Studies
      Article 4 weeks ago 5 min read Langley Celebrates Pride Month: Derek Bramble
      Article 4 weeks ago Keep Exploring Discover Related Topics
      Technology Transfer & Spinoffs
      Langley Research Center
      Aeronautics
      Neutral Buoyancy Laboratory
      View the full article
    • By NASA
      “Houston, Tranquility Base here, the Eagle has landed.” “That’s one small step for [a] man, one giant leap for mankind.” “Magnificent desolation.” Three phrases that recall humanity’s first landing on and exploration of the lunar surface. In July 1969, Apollo 11 astronauts Neil A. Armstrong, Michael Collins, and Edwin E. “Buzz” Aldrin completed humanity’s first landing on the Moon. They fulfilled President John F. Kennedy’s national goal, set in May 1961, to land a man on the Moon and return him safely to the Earth before the end of the decade. Scientists began examining the first Moon rocks two days after the Apollo 11 splashdown while the astronauts began a three-week postflight quarantine.

      Just another day at the office. Apollo 11 astronauts Neil A. Armstrong, left, Michael Collins, and Edwin E. “Buzz” Aldrin arrive for work at NASA’s Kennedy Space Center in Florida four days before launch.

      Left: Buzz, Mike, and Neil study their flight plans one more time. Middle: Neil and Buzz in the Lunar Module simulator. Right: Mike gets in some flying a few days before launch.

      Buzz, Neil, and Mike look very relaxed as they talk to reporters in a virtual press conference on July 14.

      Left: The crew. Middle: The patch. Right: The crew conquer the Moon, a TIME LIFE photograph.

      Left: Breakfast, the most important meal if you’re going to the Moon. Middle: Proper attire for lunar travel. Right: Wave good-bye to all your friends and supporters before you head for the launch pad.

      Left: Engineers in the Launch Control Center at NASA’s Kennedy Space Center in Florida monitor the countdown. Middle: Once the rocket clears the launch tower, they turn control over to another team and they can watch it ascend into the sky. Right: Engineers in the Mission Control Center at the Manned Spacecraft Center, now NASA’s Johnson Space Center in Houston, take over control of the flight once the tower is clear.

      Left: Lady Bird, LBJ, and VP Agnew in the VIP stands. Right: A million more camped out along the beaches to see the historic launch.

      July 16, 1969. And we’re off!! Liftoff from Launch Pad 39A.

      Left: The American flag is pictured in the foreground as the Saturn V rocket for the historic Apollo 11 mission soars through the sky. Middle: First stage separation for Apollo 11. Right: Made it to orbit!

      Left: Hey, don’t forget your LM! Middle: Buzz in the LM: “S’allright?” “S’allright!” Right: As the world turns smaller.

      Left: Hello Moon! Middle left: Hello Earth! Middle right: See you soon, Columbia! Right: See you soon, Eagle! Happy landing!

      July 20, 1969. Left: Magnificent desolation, from Buzz’s window after landing. Middle: Neil takes THE first step. Right: First image taken from the lunar surface.

      Left: Neil grabs a contingency sample, just in case. Middle left: Buzz joins the party. Middle right: Neil and Buzz read the plaque. Right: Buzz sets up the solar wind experiment.

      Left: Buzz and Neil set up the flag. Middle left: Neil takes that famous photo of Buzz. Middle right: You know, this famous photo! Right: Often misidentified as Neil’s first footprint, it’s actually Buzz’s to test the lunar soil.

      Left: Buzz had the camera for a while and snapped one of the few photos of Neil on the surface. Middle left: Buzz, the seismometer, and the LM. Middle right: The LM and the laser retroreflector. Right: One of two photos from the surface that show both Buzz, the main subject, and Neil, the reflection.

      Neil took a stroll to Little West Crater and took several photos, spliced together into this pano.

      Left: Neil after the spacewalk, tired but satisfied. Middle left: Ditto for Buzz. Middle right: The flag from Buzz’s window before they went to sleep. Right: The same view, and the flag moved! Not aliens, it settled in the loose lunar regolith overnight.

      July 21, 1969. Left: Liftoff, the Eagle has wings again! Middle left: Eagle approaches Columbia, and incidentally everyone alive at the time is in this picture, except for Mike who took it. Middle right: On the way home, the Moon gets smaller. Right: And the Earth gets bigger.

      July 24, 1969. Left: Splashdown, as captured from a recovery helicopter. Middle: Upside down in Stable 2, before balloons inflated to right the spacecraft. Right: Wearing his Biological Isolation Garment (BIG), Clancy Hatleberg, the decontamination officer, sets up his decontamination canisters. He’s already handed the astronauts their BIGs, who are donning them inside the spacecraft.

      Left: Hatleberg, left, with Neil, Buzz, and Mike in the decontamination raft. Middle: Taken by U.S. Navy UDT swimmer Mike Mallory in a nearby raft, Hatleberg prepares to capture the Billy Pugh net for Neil, while Buss and Mike wave to Mallory. Right: The same scene, taken from the recovery helicopter, the Billy Pugh net visible at the bottom of the photo.

      Left: Once aboard the U.S.S. Hornet, Mike, Neil, and Buzz wearing their BIGs walk the 10 steps from the Recovery One helicopter to the Mobile Quarantine Facility (MQF), with NASA flight surgeon Dr. William Carpentier, in orange suit, following behind. Middle left: NASA engineer John Hirasaki filmed the astronauts as they entered the MQF. Middle right: Changed from their BIGs into flight suits, Mike, Neil, and Buzz chat with President Nixon through the MQF’s window. Right: Neil, playing the ukelele, Buzz, and Mike inside the MQF.

      Follow the Moon rocks from the Hornet to Ellington AFB. Left: NASA technician receives the first box of Moon rocks from the MQF’s transfer lock. Middle Left: Within a few hours of splashdown, the first box of Moon rocks departs Hornet bound for Johnston Island, where workers transferred it to a cargo plane bound for Houston. Middle right: Workers at Houston’s Ellington Air Force Base unload the first box of Moon rocks about eight hours later. Right: Senior NASA managers hold the first box of Moon rocks.

      July 25, 1969. Follow the Moon rocks from Ellington to the glovebox in the Lunar Receiving Laboratory (LRL). Left: NASA officials Howard Schneider and Gary McCollum carry the first box of Moon rocks from the cargo plane to a waiting car for transport to the LRL at MSC. Middle right: In the LRL, technicians at MSC unpack the first box of Moon rocks. Middle right: Technicians weigh the box of Moon rocks. Right: The first box of Moon rocks inside a glovebox.

      July 26, 1969. Follow the Moon rocks in the LRL glovebox. Left: The first box of Moon rocks has been unwrapped. Middle: The box has been opened, revealing the first lunar samples. Right: The first rock to be documented, less than 48 hours after splashdown.

      July 26, 1969. Follow the astronauts from Hornet to Honolulu. Left: Two days after splashdown, the U.S.S. Hornet docks at Pearl Harbor in Honolulu. Middle left: Workers lift the MQF, with Neil, Mike, and Buzz inside, onto the pier. Middle right: A large welcome celebration for the Apollo 11 astronauts. Right: The MQF seen through a lei.

      Follow the astronauts from Pearl Harbor to Ellington AFB. Left: Workers truck the MQF from Pearl Harbor to nearby Hickam AFB. Middle left: Workers load the MQF onto a cargo plane at Hickam for the flight to Houston. Middle right: During the eight-hour flight, NASA recovery team members pose with Neil, Mike, and Buzz, seen through the window of the MQF. Right: Workers unload the MQF at Houston’s Ellington AFB.

      July 27, 1969. Follow the astronauts from Ellington to working in the LRL. Left: At Ellington, Neil, Mike, and Buzz reunite with their wives Jan, Pat, and TBS. Middle left: The MQF docks at the LRL. Middle right: Neil, Mike, and Buzz address the workers inside the LRL. Right: It’s back to work for Neil, Mike, and Buzz as they hold their debriefs in a glass-walled conference room in the LRL.

      Follow the spacecraft from splashdown to Hawaii. Left: Sailors hoist the Command Module Columbia onto the deck of the U.S.S. Hornet. Middle left: The flexible tunnel connects the CM to the MQF, allowing for retrieval of the Moon rocks and other items. Center: U.S. Marines guard Columbia aboard the Hornet. Middle right: Columbia brought on deck as Hornet docks in Pearl Harbor. Right: NASA engineers safe Columbia on Ford Island in Honolulu.

      July 31, 1969. Follow the spacecraft from Hawaii to the LRL. Left: Airmen load Columbia onto a cargo plane at Hickam AFB for the flight to Houston. Middle: Columbia arrives outside the LRL, where the MQF is still docked. Right: Hirasaki opens the hatch to Columbia in the LRL.
      To be continued …
      News from around the world in July 1969:
      July 1 – Investiture of Prince Charles, age 21, as The Prince of Wales.
      July 3 – 78,000 attend the Newport Jazz Festival in Newport, Rhode Island.
      July 4 – John Lennon and the Plastic Ono Band release the single “Give Peace a Chance.”
      July 11 – David Bowie releases the single “Space Oddity.”
      July 11 – The Rolling Stones release “Honky Tonk Woman.”
      July 14 – “Easy Rider,” starring Dennis Hopper, Peter Fonda, and Jack Nicholson, premieres.
      July 18 – NASA Administrator Thomas O. Paine approves the “dry” workshop concept for the Apollo Applications Program, later renamed Skylab.
      July 26 – Sharon Sites Adams becomes the first woman to solo sail the Pacific Ocean.
      July 31 – Mariner 6 makes close fly-by of Mars, returning photos and data.
      Explore More
      13 min read 15 Years Ago: STS-127 Delivers Japanese External Platform to Space Station
      Article 18 hours ago 9 min read 45 Years Ago: Skylab Reenters Earth’s Atmosphere
      Article 5 days ago 8 min read 30 Years Ago: STS-65, the Second International Microgravity Lab Mission
      Article 6 days ago View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      HyAxiom’s 440-kilowatt phosphoric acid fuel cell is now its flagship product, and it still builds on technical know-how developed under the Apollo and space shuttle programs.Credit: HyAxiom Inc. NASA’s investment in fuel cells dates to the 1960s when most of the world was still reliant on fossil fuels. A fuel cell generates electricity and heat when hydrogen and oxygen bond through an electrolyte. Because its only by-product is water, it’s an environmentally friendly power source. 

      The agency’s interest in fuel cells came when NASA needed to fuel missions to the Moon. Engineers at NASA’s Johnson Space Center in Houston looked to fuel cells because they could provide more energy per pound than batteries could over the course of a long mission. At that time, fuel cells were just a concept that had never been put to practical use. 
      NASA funded development of the first practical fuel cells because they were necessary to cut weight from the Apollo spacecraft for Moon missions. Three fuel cells in the Apollo service module provided electricity for the capsule containing the astronauts. The division of Pratt & Whitney that made the fuel cells later became UTC Power, now a subsidiary of Doosan Group known as HyAxiom Inc.Credit: NASA NASA funded three companies, including a portion of Pratt & Whitney, to develop prototypes. For Apollo mission fuel cells, NASA selected the Pratt & Whitney group, which soon became UTC Power, as the supplier of all the space shuttle fuel cells. With the agency funding and shaping its technology development, UTC Power eventually started offering commercial fuel cells. The company is now known as HyAxiom Inc. and operates from the same plant in South Windsor, Connecticut, that produced fuel cells for the agency. 

      The company released its first commercial fuel cell in the mid-1990s and introduced its current product line about a decade later. 

      “The models they built for these products we use today had a lot of the electrochemistry understanding from the space program,” said Sridhar Kanuri, HyAxiom’s chief technology officer. 

      HyAxiom now produces around 120 units per year but expects to ramp up as government investments in fuel cells increase. The U.S. government plans to use fuel cells to store energy from renewable sources. 
      Today’s commercial fuel cell companies received much of their knowledge base from NASA. John Scott, NASA’s principal technologist for power and energy storage said, “All these companies trace their intellectual property heritage, their corporate heritage, even the generations of personnel to those companies NASA funded back in the early 1960s.” 
      Read More Share
      Details
      Last Updated Jul 15, 2024 Related Terms
      Technology Transfer & Spinoffs Apollo Johnson Space Center Spinoffs Technology Transfer Explore More
      2 min read Sky High Sustainability: NASA Johnson’s Pocket Prairie Flourishes Atop Building 12
      Article 6 hours ago 6 min read Voyagers of Mars: The First CHAPEA Crew’s Yearlong Journey 
      Article 4 days ago 5 min read From Polar Peaks to Celestial Heights: Christy Hansen’s Unique Path to Leading NASA’s Commercial Low Earth Orbit Development Program 
      Article 6 days ago Keep Exploring Discover Related Topics
      The Apollo Program
      Technology Transfer & Spinoffs
      Exploring the Moon
      Technology
      View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      In developing its flow battery, ESS drew from groundbreaking research and development conducted by the space agency more than 40 years ago. Pictured here, a 200-watt demonstration unit of the flow battery NASA built in the 1970s and 1980s.Credit: NASA Solar power is abundant – when the Sun is shining. Wind power is steady – when the wind is blowing. However, creating a steady electricity supply from intermittent power sources is a challenge. NASA was focused on this problem more than 45 years ago when the agency designed a new type of liquid battery during the energy price shocks of the 1970s. While engineers continued over the following decades to develop flow batteries, as they’re now called, the technology has drawn even more attention in recent years, with the urgency of climate change powering a larger-scale transition to renewables like solar and wind.

      It’s fair to say that flow batteries today owe something to the major push the technology received in the 1970s when a NASA team of chemical, electrical, and mechanical engineers developed an iron-chromium flow battery at Lewis Research Center – now Glenn Research Center – in Cleveland.

      The NASA system involved two tanks of liquid electrolyte solutions, one infused with iron chloride and the other with chromium chloride. These electrolytes were pumped through the battery cell, triggering a chemical reaction through a membrane that separated the two solutions inside the battery. During charge, electrical energy was converted to chemical energy and stored in the electrolyte liquid. To discharge the energy, the process was reversed.
      ESS flow batteries enable a steady supply of electricity from intermittent energy sources, such as wind and solar. They store up to 12 hours of energy and discharge it when needed. They can be built in shipping containers, like the one being installed in the picture here, or larger installations can be housed in a building.Credit: ESS Inc. Wilsonville, Oregon-based ESS Inc. built on NASA’s early work as the company developed its own flow batteries using only iron, salt, and water.  When the ESS team began developing its battery in 2011, the company founders wanted to use iron as NASA had. They found they could pair iron with a simple salt solution, which was cheaper to obtain and easier to work with than the chromium mixture NASA had used.

      ESS flow batteries are designed for power grids that are increasingly powered by intermittent wind and solar generation. The company’s systems store up to 12 hours of energy and are used to provide backup power to critical community facilities.

      Read More Share
      Details
      Last Updated Jun 20, 2024 Related Terms
      Spinoffs Glenn Research Center Technology Transfer Technology Transfer & Spinoffs Explore More
      4 min read NASA Engineer Honored as Girl Scouts ‘Woman of Distinction’
      Article 2 hours ago 4 min read NASA, MagniX Altitude Tests Lay Groundwork for Hybrid Electric Planes
      Article 2 days ago 1 min read NASA Glenn Visits Duluth for Air and Aviation Expo, STEAM Festival  
      Article 1 week ago Keep Exploring Discover Related Topics
      Glenn Research Center
      Technology Transfer & Spinoffs
      Climate Change
      NASA is a global leader in studying Earth’s changing climate.
      Technology
      View the full article
    • By NASA
      The physics remain the same, but the rockets, spacecraft, landers, and spacesuits are new as NASA and its industry partners prepare for Artemis astronauts to walk on the Moon for the first time since 1972.
      NASA astronaut Doug “Wheels” Wheelock and Axiom Space astronaut Peggy Whitson put on spacesuits, developed by Axiom Space, to interact with and evaluate full-scale developmental hardware of SpaceX’s Starship HLS (Human Landing System) that will be used for landing humans on the Moon under Artemis. The test, conducted April 30, marked the first time astronauts in pressurized spacesuits interacted with a test version of Starship HLS hardware.
      “With Artemis, NASA is going to the Moon in a whole new way, with international partners and industry partners like Axiom Space and SpaceX. These partners are contributing their expertise and providing integral parts of the deep space architecture that they develop with NASA’s insight and oversight,” said Amit Kshatriya, NASA’s Moon to Mars program manager. “Integrated tests like this one, with key programs and partners working together, are crucial to ensure systems operate smoothly and are safe and effective for astronauts before they take the next steps on the Moon.”
      NASA astronaut Doug “Wheels” Wheelock and Axiom Space astronaut Peggy Whitson prepare for a test of full-scale mockups of spacesuits developed by Axiom Space and SpaceX’s Starship human landing system developed for NASA’s Artemis missions to the Moon.SpaceX The day-long test, conducted at SpaceX headquarters in Hawthorne, California, provided NASA and its partners with valuable feedback on the layout, physical design, mechanical assemblies, and clearances inside the Starship HLS, as well as the flexibility and agility of the suits, known as the AxEMU (Axiom Extravehicular Mobility Unit).
      To begin the test, Wheelock and Whitson put on the spacesuits in the full-scale airlock that sits on Starship’s airlock deck. Suits were then pressurized using a system immediately outside the HLS airlock that provided air, electrical power, cooling, and communications to the astronauts. Each AxEMU also included a full-scale model of the Portable Life Support System, or “backpack,” on the back of the suits. For Artemis moonwalks, each crew member will put on a spacesuit with minimal assistance, so the team was eager to evaluate how easily the suits can be put on, taken off, and stowed in the airlock.
      Astronauts were fully suited while conducting mission-like maneuvers in the full-scale build of the Starship human landing system’s airlock which will be located inside Starship under the crew cabin. SpaceX During the test, NASA and SpaceX engineers were also able to evaluate placement of mobility aids, such as handrails, for traversing the hatch. Another set of mobility aids, straps hanging from the ceiling in the airlock, assisted the astronauts when entering and removing the AxEMU suits. The astronauts also practiced interacting with a control panel in the airlock, ensuring controls could be reached and activated while the astronauts were wearing gloves.
      “Overall, I was pleased with the astronauts’ operation of the control panel and with their ability to perform the difficult tasks they will have to do before stepping onto the Moon,” said Logan Kennedy, lead for surface activities in NASA’s HLS Program. “The test also confirmed that the amount of space available in the airlock, on the deck, and in the elevator, are sufficient for the work our astronauts plan to do.”
      The suited astronauts also walked the from Starship’s airlock deck to the elevator built for testing. During Artemis missions, the elevator will take NASA astronauts and their equipment from the deck to the lunar surface for a moonwalk and then back again. Whitson and Wheelock practiced opening a gate to enter the elevator while evaluating the dexterity of the AxEMU suit gloves, and practiced lowering the ramp that astronauts will use to take the next steps on the Moon.
      Wheelock and Whitson were able to test the agility of the spacesuits by conducting movements and tasks similar to those necessary during lunar surface exploration on Artemis missions, such as operating Starship’s elevator gate. SpaceX The steps the astronauts took in the spacesuits through full-scale builds of the Starship hatch, airlock, airlock deck, and elevator may have been small, but they marked an important step toward preparing for a new generation of moonwalks as part of Artemis.
      For the Artemis III mission, SpaceX will provide the Starship HLS that will dock with Orion in lunar orbit and take two astronauts to and from the surface of the Moon. Axiom Space is providing a new generation of spacesuits for moonwalks that are designed to fit a wider range of astronauts.
      With Artemis, NASA will explore more of the Moon than ever before, learn how to live and work away from home, and prepare for future human exploration of the Red Planet. NASA’s SLS (Space Launch System) rocket, exploration ground systems, and Orion spacecraft, along with the human landing system, next-generation spacesuits, Gateway lunar space station, and future rovers are NASA’s foundation for deep space exploration.
      For more information about Artemis, visit:
      https://www.nasa.gov/artemis
      View the full article
  • Check out these Videos

×
×
  • Create New...