Jump to content

Giant beings might still reside underground today!


Recommended Posts

The notion that giants once roamed the earth has been widely discussed and supported by photographs of their skulls and skeletons found worldwide. 

Ancient megalithic structures, enormous and enigmatic, prompt us to question their builders. It seems impossible that human beings could have constructed such structures. 

giants%20malta%20nephilim.jpg

Take, for instance, the colossal stones of Sacsayhuamán in Peru. When The conquistadors asked theInca about the walls at Sacsayjuaman, the Inca told them the Giants had built it. 

Similarly, Malta, an island steeped in history and legend, houses mysterious megalithic structures that have baffled archaeologists for centuries. These massive stone temples, among the oldest globally, appear beyond the capabilities of prehistoric farmers. 

However, the intrigue doesn't stop there.

Legends speak of the Nephilim, giant beings believed to have built these monumental structures. Some theories even suggest their descendants might still reside underground today. 

We investigate the possibility of these giants, examining bones, elongated skulls, and mysterious hidden subterranean chambers called The Hypogeum.

 

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      The physics remain the same, but the rockets, spacecraft, landers, and spacesuits are new as NASA and its industry partners prepare for Artemis astronauts to walk on the Moon for the first time since 1972.
      NASA astronaut Doug “Wheels” Wheelock and Axiom Space astronaut Peggy Whitson put on spacesuits, developed by Axiom Space, to interact with and evaluate full-scale developmental hardware of SpaceX’s Starship HLS (Human Landing System) that will be used for landing humans on the Moon under Artemis. The test, conducted April 30, marked the first time astronauts in pressurized spacesuits interacted with a test version of Starship HLS hardware.
      “With Artemis, NASA is going to the Moon in a whole new way, with international partners and industry partners like Axiom Space and SpaceX. These partners are contributing their expertise and providing integral parts of the deep space architecture that they develop with NASA’s insight and oversight,” said Amit Kshatriya, NASA’s Moon to Mars program manager. “Integrated tests like this one, with key programs and partners working together, are crucial to ensure systems operate smoothly and are safe and effective for astronauts before they take the next steps on the Moon.”
      NASA astronaut Doug “Wheels” Wheelock and Axiom Space astronaut Peggy Whitson prepare for a test of full-scale mockups of spacesuits developed by Axiom Space and SpaceX’s Starship human landing system developed for NASA’s Artemis missions to the Moon.SpaceX The day-long test, conducted at SpaceX headquarters in Hawthorne, California, provided NASA and its partners with valuable feedback on the layout, physical design, mechanical assemblies, and clearances inside the Starship HLS, as well as the flexibility and agility of the suits, known as the AxEMU (Axiom Extravehicular Mobility Unit).
      To begin the test, Wheelock and Whitson put on the spacesuits in the full-scale airlock that sits on Starship’s airlock deck. Suits were then pressurized using a system immediately outside the HLS airlock that provided air, electrical power, cooling, and communications to the astronauts. Each AxEMU also included a full-scale model of the Portable Life Support System, or “backpack,” on the back of the suits. For Artemis moonwalks, each crew member will put on a spacesuit with minimal assistance, so the team was eager to evaluate how easily the suits can be put on, taken off, and stowed in the airlock.
      Astronauts were fully suited while conducting mission-like maneuvers in the full-scale build of the Starship human landing system’s airlock which will be located inside Starship under the crew cabin. SpaceX During the test, NASA and SpaceX engineers were also able to evaluate placement of mobility aids, such as handrails, for traversing the hatch. Another set of mobility aids, straps hanging from the ceiling in the airlock, assisted the astronauts when entering and removing the AxEMU suits. The astronauts also practiced interacting with a control panel in the airlock, ensuring controls could be reached and activated while the astronauts were wearing gloves.
      “Overall, I was pleased with the astronauts’ operation of the control panel and with their ability to perform the difficult tasks they will have to do before stepping onto the Moon,” said Logan Kennedy, lead for surface activities in NASA’s HLS Program. “The test also confirmed that the amount of space available in the airlock, on the deck, and in the elevator, are sufficient for the work our astronauts plan to do.”
      The suited astronauts also walked the from Starship’s airlock deck to the elevator built for testing. During Artemis missions, the elevator will take NASA astronauts and their equipment from the deck to the lunar surface for a moonwalk and then back again. Whitson and Wheelock practiced opening a gate to enter the elevator while evaluating the dexterity of the AxEMU suit gloves, and practiced lowering the ramp that astronauts will use to take the next steps on the Moon.
      Wheelock and Whitson were able to test the agility of the spacesuits by conducting movements and tasks similar to those necessary during lunar surface exploration on Artemis missions, such as operating Starship’s elevator gate. SpaceX The steps the astronauts took in the spacesuits through full-scale builds of the Starship hatch, airlock, airlock deck, and elevator may have been small, but they marked an important step toward preparing for a new generation of moonwalks as part of Artemis.
      For the Artemis III mission, SpaceX will provide the Starship HLS that will dock with Orion in lunar orbit and take two astronauts to and from the surface of the Moon. Axiom Space is providing a new generation of spacesuits for moonwalks that are designed to fit a wider range of astronauts.
      With Artemis, NASA will explore more of the Moon than ever before, learn how to live and work away from home, and prepare for future human exploration of the Red Planet. NASA’s SLS (Space Launch System) rocket, exploration ground systems, and Orion spacecraft, along with the human landing system, next-generation spacesuits, Gateway lunar space station, and future rovers are NASA’s foundation for deep space exploration.
      For more information about Artemis, visit:
      https://www.nasa.gov/artemis
      View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      The WirelessArray developed by Interdisciplinary Consulting Corporation (IC2), laid out here for a test flight at Langley Research Center, makes flight testing for drones quick and cost-effective.Credit: NASA Anyone who lives near an airport or is experiencing the emergence of a cicada brood can quickly identify the source of that ongoing noise. However, running tests to identify the noise created by a new drone or find pests in a field of crops requires a high-tech solution that maps sound.

      With help from NASA, Interdisciplinary Consulting Corporation (IC2) introduced a new Wireless Array to do just that – anywhere, anytime. Airplanes undergo noise testing and require certification, so they don’t exceed the Federal Aviation Administration’s noise limits. Each small, saucer-shaped base, called a node, is equipped with an embedded microphone that measures the air pressure changes created by overhead sounds. For a large vehicle like an airplane, hundreds of these sensors, or microphone array, are laid out in a pattern on a runway to monitor the underside of the plane as it flies over.

      Interested in making its flight tests more affordable, NASA’s Langley Research Center in Hampton, Virginia, supported the company with Small Business Innovation Research contracts and expert consulting.
      “Each node contains a small computer system able to acquire and store data in memory on an SD card. It also has a small web server that allows the end user to start acquisition, stop recording, download files, check on the battery health, and more,” said Chip Patterson, vice president of IC2.

      All it takes to operate an individual node or an extensive array is an off-the-shelf wireless access point and a standard laptop with IC2’s software application. The technology integrates into existing noise testing systems.
      The microphone can easily be swapped for various other sensor types, like an acoustic sensor, making it possible to monitor animal noises that indicate health and well-being. An infrasonic sensor could measure the noise from supersonic aircraft, identifying the direction and arrival of a sonic boom.

      This small, portable technology is finding its way into various projects and applications beyond aircraft testing. Working with an entomologist, IC2 will use acoustic data to listen for high-frequency insect sounds in agricultural settings. Discovering where insects feed on crops will allow farmers to intervene before they do too much damage while limiting pesticide use in those areas. With NASA’s help, IC2’s Wireless Array technology enables sound-based solutions in agriculture, aerospace, and beyond. 
      Read More Share
      Details
      Last Updated May 29, 2024 Related Terms
      Spinoffs Langley Research Center Technology Transfer Technology Transfer & Spinoffs Explore More
      2 min read Tech Today: From Spacesuits to Racing Suits
      Article 1 week ago 4 min read NASA’s X-59 Passes Milestone Toward Safe First Flight 
      Article 2 weeks ago 2 min read Tech Today: A NASA-Inspired Bike Helmet with Aerodynamics of a Jet  
      Article 2 weeks ago Keep Exploring Discover Related Topics
      Technology Transfer & Spinoffs
      Aeronautics
      Langley Research Center
      SBIR/STTR News & Success Stories
      View the full article
    • By NASA
      Jennifer Scott Williams embodies leadership, innovation, and excitement for life. Her career has been a testament to her unwavering passion and versatility, navigating through various roles and significantly contributing to the agency’s milestones and evolution. In her 23 years at NASA, she has combined engineering, business, science communications, and leadership all into one.    
      Currently in the Center Director’s Office, Williams serves as NASA Johnson Space Center Director Vanessa Wyche’s assistant for technical integration, supporting meetings such as readiness reviews for the International Space Station and Commercial Crew Programs. Her role also involves coordinating skip-level meetings for Dare | Unite | Explore and overseeing senior staff meetings to ensure that leadership remains informed about the activities happening across the center.  
      Official portrait of Jennifer Scott Williams. Credit: NASA/Josh Valcarcel  She also plays a role in the International Space Station Program’s Research Integration Office, ensuring crews aboard the space station have the tools they need to complete their research. 

      “Like many of our laboratories where astronauts conduct their research, understanding the engineering components of the facilities we use on board is crucial,” said Williams. “Understanding the science is also critical,” she added. “It adds meaning to our work when we help execute the science onboard and communicate the creative insights and results from the experiments conducted. Being a good communicator is extremely important and creativity makes that message real and mean something to the public.” 
      Jennifer Scott Williams (front) during a senior staff outreach event at the Remembering Columbia Museum in Hemphill, Texas. Her journey also included groundbreaking work on the Boeing Starliner spacecraft, where she served as the instrumentation and communications officer on the Boeing Mission Operations Team. Her efforts established operational foundations that will shape its future space missions. Williams was instrumental in developing the vehicle communications systems, understanding its operations, creating simulations, coding, and comprehending the computer systems, addressing all the fundamental aspects necessary for the spacecraft. 

      Beyond her technical contributions, Williams is deeply committed to inspiring the next generation of explorers. She also managed the Minority University Research and Education Project, encouraging students of color to engage in STEM fields.  

      She led a team that collaborated with students, teachers, and educational institutions through the Pre-Service Teacher Program. Williams said that working in the Office of STEM Engagement was a new experience that became life-changing for her. “I really rediscovered a passion that I have for students and education,” she said. “I love being able to help interns navigate the NASA environment and help people of color be able to apply for NASA jobs. It takes all perspectives to accomplish our mission.” 

      Williams earned dual bachelor’s degrees in mathematics and electrical engineering from Spelman College and the Georgia Institute of Technology. She later received a master’s degree in electrical engineering from the University of Houston. She belongs to the Spelman College National Alumni Association and holds a lifetime membership in the National Society of Black Engineers. 
      Jennifer Scott Williams’ headshot in the 2024 International Space Station calendar.Credit: NASA/Bill Stafford   Williams is an advocate for youth interested in pursuing STEM careers. Her advice is, “Come on and do it. We are out here,” she added “I love that we are embracing our differences instead of shunning differences because having people with different backgrounds, personalities, insights, and perspectives is what’s going to help us get back to the Moon.”     

      “For the Artemis Generation, we need creative minds,” she said. “We need artists, scientists, engineers, technologists, physicians, attorneys, and financial connoisseurs. This next generation is going to have to be open-minded thought seekers. They need to be willing to do things that we have never done before and take the risks so that we can put boots on the Moon and Mars.” 
      Jennifer Scott Williams with her family at Kennedy Space Center in Florida for the launch of NASA’s SpaceX Commercial Resupply Service mission to the International Space Station on March 15, 2023. Williams also plays an integral role in Dare | Unite | Explore initiatives. She works with senior leadership to make sure the workforce has professional mobility and is able to get the training and resources for new opportunities. “We want to encourage employees to try new things, to learn, and to grow in different organizations,” she said. “Dare | Unite | Explore ensures that the Johnson workforce is fully supported in our efforts as we grow and develop and that our facilities and processes can support us and are in alignment with our future initiatives.”   
      “I never really thought I would work at NASA, but when I came here to interview, they put me in the shuttle simulator and I was hooked,” she said. “I encourage my children to pursue careers in STEM because it has been so beneficial to me throughout my life. The people that I have come across in my time here have been phenomenal. It makes me want to keep coming to work.”  
      View the full article
    • By European Space Agency
      ESA’s gamma-ray space telescope Integral has played a decisive role in capturing jets of matter being expelled into space at one-third the speed of light. The material and energy were liberated when huge explosions occurred on the surface of a neutron star. This world-first observation proved to be “a perfect experiment” for exploring astrophysical jets of all descriptions.
      View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Lazurite’s ArthroFree Wireless Camera System incorporated aerospace-grade lithium-ion batteries after developers consulted with NASA engineers. Credit: Lazurite Holdings LLC After Eugene Malinskiy saw a physician assistant trip over arthroscopic camera cords during a medical procedure, he and his brother, Ilya, set out to develop a wireless arthroscopic camera.

      Early in the development process, the Malinskiys got a boost from engineers at NASA’s Glenn Research Center in Cleveland, who advised on technical specifications through the center’s Adopt-a-City program. This agency program enabled Glenn engineers to consult with them pro bono via a Space Act Agreement with the city of Cleveland.

      The team also consulted with NASA engineers on their plan to use the ultra-wideband protocol – radio technology enabling encrypted transfer of a high-definition signal – and their planned processors and chips used in the device’s central processing unit.

      Ilya Malinskiy said the company gave investors the space agency engineers’ feedback. “Being able to say we had very skilled NASA engineers take a look at our device and say we should keep going was very, very useful.”

      It turned out that the first wireless arthroscopic camera wasn’t entirely unlike CubeSats – tiny satellites that often orbit Earth in clusters.

      “We had a lot of the same issues,” Ilya Malinskiy said. “We both have very small devices that need reliable power without adding a lot of weight.”

      Ultimately, the NASA engineers connected the Lazurite team with several high-fidelity aerospace lithium-ion battery vendors.

      In 2022, Lazurite’s ArthroFree Wireless Camera System became the first FDA-cleared wireless camera system for minimally invasive surgery. Since then, the device has assisted in countless surgeries, and the company has raised tens of millions of dollars.
      Read More Share
      Details
      Last Updated Mar 26, 2024 Related Terms
      Technology Transfer & Spinoffs General Glenn Research Center Spinoffs Technology Transfer Explore More
      3 min read Partnerships that Prepare for Success: The Research Institution Perspective on the M-STTR Initiative
      Article 1 day ago 2 min read Find Your Place In Space Week
      Article 4 days ago 6 min read Station Science 101: Cardiovascular Research on Station
      Article 5 days ago Keep Exploring Discover Related Topics
      Missions
      Glenn Research Center
      Technology Transfer & Spinoffs
      Technology
      View the full article
  • Check out these Videos

×
×
  • Create New...