Jump to content

Recommended Posts

  • Publishers
Posted

6 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

The technology behind the two seismometers that make up NASA’s Farside Seismic Suite was used to detect more than a thousand Red Planet quakes.

The most sensitive instrument ever built to measure quakes and meteor strikes on other worlds is getting closer to its journey to the mysterious far side of the Moon. It’s one of two seismometers adapted for the lunar surface from instruments originally designed for NASA’s InSight Mars lander, which recorded more than 1,300 marsquakes before the mission’s conclusion in 2022.

Part of a payload called Farside Seismic Suite (FSS) that was recently assembled at NASA’s Jet Propulsion Laboratory in Southern California, the two seismometers are expected to arrive in 2026 at Schrödinger basin, a wide impact crater about 300 miles (500 kilometers) from the Moon’s South Pole. The self-sufficient, solar-powered suite has its own computer and communications equipment, plus the ability to protect itself from the extreme heat of lunar daytime and the frigid conditions of night.

Lunar Seismic Firsts

After being delivered to the surface by a lunar lander under NASA’s CLPS (Commercial Lunar Payload Services) initiative, the suite will return the agency’s first seismic data from the Moon since the last Apollo program seismometers were in operation nearly 50 years ago. Not only that, but it will also provide the first-ever seismic measurements from the Moon’s far side.

e1-pia22871-insight-seis-cropped.jpg?w=1
The Seismic Experiment for Interior Structure instrument (SEIS) aboard NASA’s Mars InSight is within the copper-colored hexagonal enclosure in this photo taken by a camera on the lander’s robotic arm on Dec. 4, 2018. The SEIS technology is being used on Farside Seismic Suite, bound for the Moon.
NASA/JPL-Caltech

Up to 30 times more sensitive than its Apollo predecessors, the suite will record the Moon’s seismic “background” vibration, which is driven by micrometeorites the size of small pebbles that pelt the surface. This will help NASA better understand the current impact environment as the agency prepares to send Artemis astronauts to explore the lunar surface.

Planetary scientists are eager to see what FSS tells them about the Moon’s internal activity and structure. What they learn will offer insights into how the Moon — as well as rocky planets like Mars and Earth — formed and evolved.

It will also answer a lingering question about moonquakes: Why did the Apollo instruments on the lunar near side detect little far-side seismic activity? One possible explanation is that something in the Moon’s deep structure essentially absorbs far-side quakes, making them harder for Apollo’s seismometers to have sensed. Another is that there are fewer quakes on the far side, which on the surface looks very different from the side that faces Earth.

“FSS will offer answers to questions we’ve been asking about the Moon for decades,” said Mark Panning, the FSS principal investigator at JPL and project scientist for InSight. “We cannot wait to start getting this data back.”

Mars-to-Moon Science

Farside Seismic Suite’s two complementary instruments were adapted from InSight designs to perform in lunar gravity — less than half that of Mars, which, in turn, is about a third of Earth’s. They’re packaged together with a battery, the computer, and electronics inside a cube structure that’s surrounded by insulation and an outer protective cube. Perched atop the lander, the suite will gather data continuously for at least 4½ months, operating through the long, cold lunar nights.

, Farside Seismic Suite’s inner cube
Seen here during assembly in November 2023, Farside Seismic Suite’s inner cube houses the NASA payload’s large battery (at rear) and its two seismometers. The gold, puck-shaped device holds the Short Period sensor, while the silver enclosure contains the Very Broadband seismometer.
NASA/JPL-Caltech

The Very Broadband seismometer, or VBB, is the most sensitive seismometer ever built for use in space exploration: It can detect ground motions smaller than the size of a single hydrogen atom. A fat cylinder about 5 inches (14 centimeters) in diameter, it measures up-and-down movement using a pendulum held in place by a spring. It was originally constructed as an emergency replacement instrument (a “flight spare”) for InSight by the French space agency, CNES (Centre National d’Études Spatiales).

Philippe Lognonné of Institut de Physique du Globe de Paris, the principal investigator for InSight’s seismometer, is an FSS co-investigator and VBB instrument lead. “We learned so much about Mars from this instrument, and now we are thrilled with the opportunity to turn that experience toward the mysteries of the Moon,” he said.

The suite’s smaller seismometer, called the Short Period sensor, or SP, was built by Kinemetrics in Pasadena, California, in collaboration with the University of Oxford and Imperial College, London. The puck-shaped device measures motion in three directions using sensors etched into a trio of square silicon chips each about 1 inch (25 millimeters) wide.

Assembled and Tested

The FSS payload came together at JPL over the last year. In recent weeks, it survived rigorous environmental testing in vacuum and extreme temperatures that simulate space, along with severe shaking that mimics the rocket’s motion during launch.

“The JPL team has been excited from the beginning that we’re going to the Moon with our French colleagues,” said JPL’s Ed Miller, FSS project manager and, like Panning and Lognonné, a veteran of the InSight mission. “We went to Mars together, and now we’ll be able to look up at the Moon and know we built something up there. It’ll make us so proud.”

More About the Mission

A division of Caltech in Pasadena, California, JPL manages, designed, assembled, and tested Farside Seismic Suite. The French space agency, CNES (Centre National d’Études Spatiales), and IPGP (Institut de Physique du Globe de Paris) provided the suite’s Very Broadband seismometer with support from Université Paris Cité and the CNRS (Centre National de la Recherche Scientifique). Imperial College, London and the University of Oxford collaborated to provide the Short Period sensor, managed by Kinemetrics in Pasadena. The University of Michigan provided the flight computer, power electronics, and associated software.

A selection of NASA’s PRISM (Payloads and Research Investigations on the Surface of the Moon), FSS is funded by the Exploration Science Strategy and Integration Office within the agency’s Science Mission Directorate. The Planetary Missions Program Office at NASA’s Marshall Space Flight Center provides program management. FSS will land on the Moon as part of an upcoming lunar delivery under NASA’s CLPS (Commercial Lunar Payload Services) initiative.

More information about FSS is at:

https://go.nasa.gov/FSS

News Media Contact

Melissa Pamer
Jet Propulsion Laboratory, Pasadena, Calif.
626-314-4928
melissa.pamer@jpl.nasa.gov

2024-074

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      1 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Fans at the 51st Annual Bayou Classic in New Orleans snap a photo with cardboard images of NASA’s Artemis II crew on Nov. 30. NASA/Danny Nowlin NASA was on full display during the 51st Annual Bayou Classic Fan Fest activity on Nov. 30, hosting an informational booth and interacting with event participants. Kicking off the Fan Fest on stage were Ken Newton, director of the NASA Shared Services Center Service Delivery Directorate; Pam Covington, director of the NASA Stennis Office of Communications; and Dawn Davis, chief of the NASA Stennis Engineering & Test Directorate Office of Technology Development.
      NASA representatives, including HBCU alumni, supported the morning-long event, providing Fan Fest attendees with promotional items and information about student internship and employment opportunities with the agency.
      The annual Bayou Classic event attracts tens of thousands of visitors each year and features several days of activities, including a nationally broadcast football game, involving two Historically Black Colleges and Universities in Louisiana – Southern University in Baton Rouge and Grambling State University in Grambling.
      The NASA outreach and engagement effort during this year’s event focused on the theme – There’s Space for Everybody at NASA. It was part of an ongoing agencywide commitment to advance equity and reach deeper into underrepresented and underserved segments of society and was in support of efforts to advance racial equity in the federal government.
      NASA at the Bayou Classic Fan Fest video View the full article
    • By NASA
      Scientists find that cometary dust affects interpretation of spacecraft measurements, reopening the case for comets like 67P as potential sources of water for early Earth. 
      Researchers have found that water on Comet 67P/Churyumov–Gerasimenko has a similar molecular signature to the water in Earth’s oceans. Contradicting some recent results, this finding reopens the case that Jupiter-family comets like 67P could have helped deliver water to Earth.  
      Water was essential for life to form and flourish on Earth and it remains central for Earth life today. While some water likely existed in the gas and dust from which our planet materialized around 4.6 billion years ago, much of the water would have vaporized because Earth formed close to the Sun’s intense heat. How Earth ultimately became rich in liquid water has remained a source of debate for scientists.
      Research has shown that some of Earth’s water originated through vapor vented from volcanoes; that vapor condensed and rained down on the oceans. But scientists have found evidence that a substantial portion of our oceans came from the ice and minerals on asteroids, and possibly comets, that crashed into Earth. A wave of comet and asteroid collisions with the solar system’s inner planets 4 billion years ago would have made this possible.   
      This image, taken by ESA’s Rosetta navigation camera, was taken from a about 53 miles from the center of Comet 67P/Churyumov-Gerasimenko on March 14, 2015. The image resolution is 24 feet per pixel and is cropped and processed to bring out the details of the comet’s activity. ESA/Rosetta/NAVCAM While the case connecting asteroid water to Earth’s is strong, the role of comets has puzzled scientists. Several measurements of Jupiter-family comets — which contain primitive material from the early solar system and are thought to have formed beyond the orbit of Saturn — showed a strong link between their water and Earth’s. This link was based on a key molecular signature scientists use to trace the origin of water across the solar system.
      This signature is the ratio of deuterium (D) to regular hydrogen (H) in the water of any object, and it gives scientists clues about where that object formed. Deuterium is a rare, heavier type — or isotope — of hydrogen. When compared to Earth’s water, this hydrogen ratio in comets and asteroids can reveal whether there’s a connection.  
      Because water with deuterium is more likely to form in cold environments, there’s a higher concentration of the isotope on objects that formed far from the Sun, such as comets, than in objects that formed closer to the Sun, like asteroids. 
      Measurements within the last couple of decades of deuterium in the water vapor of several other Jupiter-family comets showed similar levels to Earth’s water. 
      “It was really starting to look like these comets played a major role in delivering water to Earth,” said Kathleen Mandt, planetary scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Mandt led the research, published in Science Advances on Nov. 13, that revises the abundance of deuterium in 67P. 

      About Kathleen Mandt

      But in 2014, ESA’s (European Space Agency) Rosetta mission to 67P challenged the idea that Jupiter-family comets helped fill Earth’s water reservoir. Scientists who analyzed Rosetta’s water measurements found the highest concentration of deuterium of any comet, and about three times more deuterium than there is in Earth’s oceans, which have about 1 deuterium atom for every 6,420 hydrogen atoms.  
      “It was a big surprise and it made us rethink everything,” Mandt said.  
      Mandt’s team decided to use an advanced statistical-computation technique to automate the laborious process of isolating deuterium-rich  water in more than 16,000 Rosetta measurements. Rosetta made these measurements in the “coma” of gas and dust surrounding 67P. Mandt’s team, which included Rosetta scientists, was the first to analyze all of the European mission’s water measurements spanning the entire mission. 
      The researchers wanted to understand what physical processes caused the variability in the hydrogen isotope ratios measured at comets. Lab studies and comet observations showed that cometary dust could affect the readings of the hydrogen ratio that scientists detect in comet vapor, which could change our understanding of where comet water comes from and how it compares to Earth’s water. 
      What are comets made of? It’s one of the questions ESA’s Rosetta mission to comet 67P/Churyumov-Gerasimenko wanted to answer. “So I was just curious if we could find evidence for that happening at 67P,” Mandt said. “And this is just one of those very rare cases where you propose a hypothesis and actually find it happening.” 
      Indeed, Mandt’s team found a clear connection between deuterium measurements in the coma of 67P and the amount of dust around the Rosetta spacecraft, showing that the measurements taken near the spacecraft in some parts of the coma may not be representative of the composition of a comet’s body.  
      As a comet moves in its orbit closer to the Sun, its surface warms up, causing gas to release from the surface, including dust with bits of water ice on it. Water with deuterium sticks to dust grains more readily than regular water does, research suggests. When the ice on these dust grains is released into the coma, this effect could make the comet appear to have more deuterium than it has.  
      Mandt and her team reported that by the time dust gets to the outer part of the coma, at least 75 miles from the comet body, it is dried out. With the deuterium-rich water gone, a spacecraft can accurately measure the amount of deuterium coming from the comet body.
      This finding, the paper authors say, has big implications not only for understanding comets’ role in delivering Earth’s water, but also for understanding comet observations that provide insight into the formation of the early solar system.  
      “This means there is a great opportunity to revisit our past observations and prepare for future ones so we can better account for the dust effects,” Mandt said. 
      By Lonnie Shekhtman
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Explore More
      9 min read Towards Autonomous Surface Missions on Ocean Worlds


      Article


      31 mins ago
      1 min read Coming Spring 2025: Planetary Defenders Documentary
      ow would humanity respond if we discovered an asteroid headed for Earth? NASA’s Planetary Defenders…


      Article


      52 mins ago
      5 min read What’s Up: December 2024 Skywatching Tips from NASA


      Article


      1 day ago
      Share








      Details
      Last Updated Dec 03, 2024 Editor Lonnie Shekhtman Contact Lonnie Shekhtman lonnie.shekhtman@nasa.gov Location Goddard Space Flight Center Related Terms
      Comets Goddard Space Flight Center Planetary Science Planetary Science Division Rosetta Science Mission Directorate The Solar System View the full article
    • By European Space Agency
      ESA’s Proba-3 will be the first mission to create an artificial total solar eclipse by flying a pair of satellites 150 metres apart. For six hours at a time, it will be able to see the Sun’s faint atmosphere, the corona, in the hard-to-observe region between the Sun’s edge and 1.4 million kilometres from its surface. This new technology combined with the satellite pair’s unique extended orbit around Earth will allow Proba-3 to do important science, revealing secrets of the Sun, space weather and Earth’s radiation belts.  
      View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      A group of middle school students engage with a model aircraft while learning from NASA experts in the model lab at NASA’s Armstrong Flight Research Center in Edwards, California during an event hosted by NASA’s California Office of STEM Engagement.NASA/Steve Freeman In celebration of National Aviation History Month, experts from NASA’s Armstrong Flight Research Center in Edwards, California, spoke with middle school students during a recent event hosted by NASA’s California Office of STEM Engagement. NASA Armstrong employees shared stories about the center’s role in aviation history and current research projects while also talking about their own paths to working at NASA. During the virtual and in-person event on Nov. 6, Southern California middle school students were presented with the importance of pursing their passions, the value of internships and exploring diverse career opportunities within NASA.
      Kicking off the event, NASA Armstrong Center Director Brad Flick talked about his journey from a small town to becoming a NASA engineer. “I never, in my wildest dreams thought I had the opportunity to work for someplace like NASA,” Flick said. “I’ve been here for almost 40 years and at a little part of NASA that most people don’t know exists, right? Which is really cool that we’re tying this to aviation history month, because this is one of the places where aviation history has been made, is being made and will continue to be made.” Flick encouraged students to participate in STEAM programs that integrate the arts with science, technology, engineering, and math and stressed the importance of asking questions and being curious.
      A panel of four NASA Armstrong experts – Laurie Grindle, deputy center director; Troy Asher, director of Flight Operations; Nicki Reid, lead operations engineer; and Julio Trevino, operations engineer – shared their stories about their career paths and experiences at NASA.
      NASA Armstrong experts share their stories about their career paths and experiences at NASA to middle school students during an event hosted by NASA’s California Office of STEM Engagement at NASA’s Armstrong Flight Research Center in Edwards, California. From left to right: Laurie Grindle, Julio Trevino, Nicki Reid and Troy Asher.NASA/Steve Freeman Reid talked about her initial struggle with math and science and how it didn’t stop her from obtaining an engineering degree and applying for internships, which is what ultimately opened the door for her at NASA. “It was a really cool experience because it gives you a chance to decide whether or not you like the job and I got to learn from different people every summer,” Reid said.
      Grindle’s dream as a kid was to become an astronaut and although did not happen for her, her interest in aviation and space continued, which ultimately led to working at NASA as a student. “I had a lot of different opportunities working in different roles. I had fun while doing it and did a job I really enjoyed that made it not like work,” Grindle said.
      For Asher, determination and commitment helped him become a pilot. “I remember sitting in the back seat of the airplane, looking out and thinking, ‘I love this. I’m doing this forever,’” Asher said. “But it took me five or six years before I had that moment, and it was the commitment the kept me going.”
      A group of middle school students and their teachers sit in the control room for a hands-on experience at NASA’s Armstrong Flight Research Center in Edwards, California during an event hosted by NASA’s California Office of STEM Engagement for National Aviation History Month.NASA/Steve Freeman Stories and experiences like these are important for students to hear to inspire them in their own journeys into adulthood. Students also received tours around the center with stops in the model lab, life support office and control room.
      “This was a wonderful opportunity for my seventh-grade students to learn more about careers and career paths in NASA,” said Shauna Tinich, Tropico Middle School teacher. “They were surprised that people other than astronauts and rocket scientists work for NASA, and this excited many of my students.”
      NASA’s California Office of STEM Engagement collaborates with the regional STEM community to provide opportunities like these, with the support of Next Gen STEM, to help students in sparking their interest and inspiring the next generation of leaders. To learn more, visit www.nasa.gov/learning-resources.
      Share
      Details
      Last Updated Dec 02, 2024 EditorDede DiniusContactElena Aguirreelena.aguirre@nasa.govLocationArmstrong Flight Research Center Related Terms
      Armstrong Flight Research Center Aeronautics Learning Resources Next Gen STEM STEM Engagement at NASA Explore More
      4 min read Aaron Yazzie: Bridging Indigenous Heritage and Space Exploration
      Article 5 days ago 2 min read Why NASA Is a Great Place to Launch Your Career 
      Article 1 week ago 3 min read Northwestern University Takes Top Honors in BIG Idea Lunar Inflatables Challenge 
      Article 2 weeks ago Keep Exploring Discover More Topics From NASA
      Armstrong Flight Research Center
      Learning Resources
      Armstrong People
      Armstrong Flight Research Center History
      View the full article
    • By NASA
      Many team members at NASA’s Johnson Space Center in Houston may recognize Alicia Baker as the talented flutist in the Hispanic Employee Resource Group’s Mariachi Celestial band. Or, they may have worked with Baker in her role as a spacesuit project manager, testing NASA’s prototype spacesuits and preparing Johnson’s test chambers to evaluate vendor spacesuits.

      Alicia Baker in a spacesuit test chamber at Johnson Space Center.NASA/David DeHoyos They might be surprised to learn that Baker juggled these responsibilities and more while also caring for her late husband, Chris, as he fought a terminal illness for 16 years.

      “It was hard taking care of a loved one with cancer and working full-time,” Baker said. “My husband was also disabled from a brain tumor surgery, so I had to help him with reading, writing, walking, and remembering, while managing the household.”

      Baker worked closely with her manager to coordinate schedules and get approval to telework so that she could work around her husband’s medical appointments and procedures. She also took medical leave when her husband entered hospice care in 2020. Baker said her manager’s flexibility “saved her job” and allowed her to continue providing for her family. She was even able to advance from project engineer to test director to project manager during this time period.

      Alicia Baker and her husband Chris on their wedding day. Image courtesy of Alicia Baker Baker is one of the many Johnson employees who are or have been a caregiver for a loved one. These caregivers provide help to a person in need who often has a medical condition or injury that affects their daily functioning. Their needs may be temporary or long-term, and they could be physical, medical, financial, or domestic in nature.

      Recognizing the challenging and critical role caregivers play in their families, the Johnson community provides a variety of resources to support team members through the Employee Assistance Program. Additionally, Johnson’s No Boundaries Employee Resource Group (NoBo) supports caregivers through its programs and initiatives.

      Baker participates in both the support group and NoBo activities and takes comfort in sharing her and her husband’s story with others. “I would do it all over again,” she said of her caregiver role.

      Now she looks forward to future missions to the Moon, when NASA astronauts will conduct spacewalks on the lunar surface while wearing new spacesuits. “Then I can say I helped make that possible!” Throughout all of her experiences, Baker has learned to never give up. “If you have a dream, keep fighting for it,” she said.
      View the full article
  • Check out these Videos

×
×
  • Create New...