Jump to content

15 Years Ago: First Time all Partners Represented aboard the International Space Station


Recommended Posts

  • Publishers
Posted

From May 29 to July 17, 2009, for the first time in its history, each of the five partner agencies participating in the International Space Station Program had a crew member living and working aboard the orbiting facility at the same time. The period also marked the beginning of six-person crew habitation, greatly increasing the time available for utilization. The addition of the international partner elements and life support systems to enable the larger crew size made this 49-day event possible. Although international partner crew members routinely live and work aboard the station, its crew size now expanded to seven, having all the partners represented at the same time remains a unique event in the space station’s history.

Plaque commemorating the signing of the 1988 Inter-Governmental Agreement (IGA) governing the International Space Station partnership Signatories of the 1998 IGA visit the Space Station Processing Facility at NASA’s Kennedy Space Center in Florida, posing in front of the Unity Node 1 module being prepared for launch Joint NASA-Roscosmos crew of STS-88, the first space station assembly mission
Left: Plaque commemorating the signing of the 1988 Inter-Governmental Agreement (IGA) governing the International Space Station partnership. Middle: Signatories of the 1998 IGA visit the Space Station Processing Facility at NASA’s Kennedy Space Center in Florida, posing in front of the Unity Node 1 module being prepared for launch. Right: Joint NASA-Roscosmos crew of STS-88, the first space station assembly mission.

The International Space Station as we know it came into existence in 1993 with the merging of Space Station Freedom, a partnership among the United States, Canada, Japan, and the European Space Agency (ESA), with Russia’s planned Mir-2 space station. In January 1998, representatives of these space agencies met at NASA’s Kennedy Space Center in Florida and signed the Intergovernmental Agreement (IGA) that established the framework for use of the orbiting laboratory. The IGA stipulated the contributions of each agency to the program that entitled them commensurate utilization of the research facility as well as long-duration crew member flight opportunities, beginning when their elements had reached the station. Separate agreements covered the flights of International Partner astronauts on space shuttle assembly flights, usually to accompany elements from their agencies. In orbit construction of the space station began 11 months after the signing of the IGA. From the first assembly mission in December 1998 to March 2001, all components belonged to either NASA or Roscosmos, a fact reflected in the makeup of early space shuttle and expedition crews. The crew of the STS-88, the first space shuttle assembly mission, included five NASA astronauts and cosmonaut Sergei K. Krikalev representing Roscosmos.

STS-96 included Julie Payette, third from left, the first Canadian Space Agency astronaut to visit the space station STS-92 included Koichi Wakata, right, the first astronaut from the Japan Aerospace Exploration Agency to visit the space station The joint NASA-Roscosmos space station Expedition 1 crew
Left: STS-96 included Julie Payette, third from left, the first Canadian Space Agency astronaut to visit the space station. Middle: STS-92 included Koichi Wakata, right, the first astronaut from the Japan Aerospace Exploration Agency to visit the space station. Right: The joint NASA-Roscosmos space station Expedition 1 crew.

As early assembly continued, select space shuttle missions included International Partner crew members. The Canadian Space Agency’s (CSA) first astronaut to visit the space station, Julie Payette, flew as one of the seven crew members on the second assembly flight, STS-96 in May-June 1999. The first astronaut from the Japan Aerospace Exploration Agency (JAXA) to visit the station, Koichi Wakata, flew on the fifth assembly flight, STS-92 in October 2000. When the Expedition 1 crew arrived to begin permanent habitation of the space station in November 2000, the crew consisted of NASA astronaut William M. Shepherd, and Roscosmos cosmonauts Krikalev  and Yuri P. Gidenzko. The next six expeditions maintained the two-and-one crew composition, alternating between expeditions, until the impacts from the Columbia accident reduced crew size to two until Expedition 13. During this time, NASA and Roscosmos each had one crew member on board.

STS-100 included Umberto Guidoni, center, the first European Space Agency (ESA) astronaut to visit the space station Expedition 13 included Thomas A. Reiter, left, the first ESA astronaut to serve as a long-duration crew member on the space station STS-119 delivered Koichi Wakata, right, the first astronaut from the Japanese Aerospace Exploration Agency to serve as a long-duration crewmember on the space station
Left: STS-100 included Umberto Guidoni, center, the first European Space Agency (ESA) astronaut to visit the space station. Middle: Expedition 13 included Thomas A. Reiter, left, the first ESA astronaut to serve as a long-duration crew member on the space station. Right: STS-119 delivered Koichi Wakata, right, the first astronaut from the Japanese Aerospace Exploration Agency to serve as a long-duration crewmember on the space station.

The first ESA astronaut to visit the space station, Umberto Guidoni from Italy, served as a mission specialist on STS-100 in April 2001. The seven-member crew also included CSA’s Christopher A. Hadfield, who accompanied and helped install the Canadian Space Station Remote Manipulator System, and Yuri V. Lonchakov from Roscosmos, making the STS-100 crew the most internationally diverse shuttle assembly crew. Thomas A. Reiter from Germany arrived at the station aboard STS-121 in July 2006, joining Expedition 13 as ESA’s first long-duration resident crew member, and also returning the onboard crew size back to three. Wakata arrived at the station on STS-119 in March 2009 as JAXA’s first long-duration crew member, joining Expedition 19’s Lonchakov and E. Michael Fincke. Wakata’s arrival set in motion the steps leading to the unique occasion of having each of the five partners with a crew member living and working aboard the space station at the same time.

Expedition 19 crew of Koichi Wakata of the Japan Aerospace Exploration Agency, left, NASA astronaut E. Michael Fincke, and Yuri V. Lonchakov of Roscosmos Gennadi I. Padalka of Roscosmos, left, and NASA astronaut Michael M. Barratt of Expedition 19 Canadian Space Agency astronaut Robert B. Thirsk, left, Roman Y. Romanenko of Roscosmos, and European Space Agency astronaut Frank L. DeWinne of Expedition 20
Left: Expedition 19 crew of Koichi Wakata of the Japan Aerospace Exploration Agency, left, NASA astronaut E. Michael Fincke, and Yuri V. Lonchakov of Roscosmos. Middle: Gennadi I. Padalka of Roscosmos, left, and NASA astronaut Michael M. Barratt of Expedition 19. Right: Canadian Space Agency astronaut Robert B. Thirsk, left, Roman Y. Romanenko of Roscosmos, and European Space Agency astronaut Frank L. DeWinne of Expedition 20.

Eleven days after Wakata’s arrival, Soyuz TMA-14 delivered replacement Expedition 19 crew members NASA astronaut Michael M. Barratt and Gennadi I. Padalka of Roscosmos. On May 29, ESA’s Frank L. DeWinne and CSA’s Robert B. Thirsk, along with Roman Y. Romanenko of Roscosmos arrived aboard Soyuz TMA-15, and all five space station partners had representatives on board. Their arrival began Expedition 20 and the first period of six-person crew residency.

Preflight crew photo of Expedition 20, the first six-person crew on the space station – Michael M. Barratt (NASA), Frank L. DeWinne (ESA), Robert B. Thirsk (CSA), Koichi Wakata (JAXA), Gennadi I. Padalka (Roscosmos), and Roman Y. Romanenko (Roscosmos) Inflight photo of the Expedition 20 crew The Expedition 20 crew members put their heads together
Left: Preflight crew photo of Expedition 20, the first six-person crew on the space station – Michael M. Barratt (NASA), Frank L. DeWinne (ESA), Robert B. Thirsk (CSA), Koichi Wakata (JAXA), Gennadi I. Padalka (Roscosmos), and Roman Y. Romanenko (Roscosmos). Middle: Inflight photo of the Expedition 20 crew. Right: The Expedition 20 crew members put their heads together.

The period of full international representation proved brief, however, lasting just 49 days, and remains unique to this day. Wakata broke up the party on July 17 when he exchanged places with NASA astronaut Timothy L. Kopra who arrived aboard STS-127. Barratt and Padalka left on Oct. 11, replaced by another NASA-Roscosmos crew. Finally, Romanenko, DeWinne, and Thirsk left on Dec. 1, replaced after a brief gap by a crew consisting of a NASA astronaut, a JAXA astronaut, and a representative of Roscosmos.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Since launching in 2023, NASA’s Tropospheric Emissions: Monitoring of Pollution mission, or TEMPO, has been measuring the quality of the air we breathe from 22,000 miles above the ground. June 19 marked the successful completion of TEMPO’s 20-month-long initial prime mission, and based on the quality of measurements to date, the mission has been extended through at least September 2026. The TEMPO mission is NASA’s first to use a spectrometer to gather hourly air quality data continuously over North America during daytime hours. It can see details down to just a few square miles, a significant advancement over previous satellites.
      “NASA satellites have a long history of missions lasting well beyond the primary mission timeline. While TEMPO has completed its primary mission, the life for TEMPO is far from over,” said Laura Judd, research physical scientist and TEMPO science team member at NASA’s Langley Research Center in Hampton, Virginia. “It is a big jump going from once-daily images prior to this mission to hourly data. We are continually learning how to use this data to interpret how emissions change over time and how to track anomalous events, such as smoggy days in cities or the transport of wildfire smoke.” 
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      By measuring nitrogen dioxide (NO2) and formaldehyde (HCHO), TEMPO can derive the presence of near-surface ozone. On Aug. 2, 2024 over Houston, TEMPO observed exceptionally high ozone levels in the area. On the left, NO2 builds up in the atmosphere over the city and over the Houston Ship Channel. On the right, formaldehyde levels are seen reaching a peak in the early afternoon. Formaldehyde is largely formed through the oxidation of hydrocarbons, an ingredient of ozone production, such as those that can be emitted by petrochemical facilities found in the Houston Ship Channel. Trent Schindler/NASA's Scientific Visualization Studio When air quality is altered by smog, wildfire smoke, dust, or emissions from vehicle traffic and power plants, TEMPO detects the trace gases that come with those effects. These include nitrogen dioxide, ozone, and formaldehyde in the troposphere, the lowest layer of Earth’s atmosphere.
      “A major breakthrough during the primary mission has been the successful test of data delivery in under three hours with the help of NASA’s Satellite Needs Working Group. This information empowers decision-makers and first responders to issue timely air quality warnings and help the public reduce outdoor exposure during times of higher pollution,” said Hazem Mahmoud, lead data scientist at NASA’s Atmospheric Science Data Center located at Langley Research Center.
      …the substantial demand for TEMPO's data underscores its critical role…
      hazem mahmoud
      NASA Data Scientist
      TEMPO data is archived and distributed freely through the Atmospheric Science Data Center. “The TEMPO mission has set a groundbreaking record as the first mission to surpass two petabytes, or 2 million gigabytes, of data downloads within a single year,” said Mahmoud. “With over 800 unique users, the substantial demand for TEMPO’s data underscores its critical role and the immense value it provides to the scientific community and beyond.” Air quality forecasters, atmospheric scientists, and health researchers make up the bulk of the data users so far.
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      On April 14, strong winds triggered the formation of a huge dust storm in the U.S. central plains and fueled the ignition of grassland fires in Oklahoma. On the left, the NO2 plumes originating from the grassland fires are tracked hour-by-hour by TEMPO. Smoke can be discerned from dust as a source since dust is not a source of NO2. The animation on the right shows the ultraviolet (UV) aerosol index, which indicates particulates in the atmosphere that absorb UV light, such as dust and smoke. Trent Schindler/NASA's Scientific Visualization Studio The TEMPO mission is a collaboration between NASA and the Smithsonian Astrophysical Observatory, whose Center for Astrophysics Harvard & Smithsonian oversees daily operations of the TEMPO instrument and produces data products through its Instrument Operations Center.
      Datasets from TEMPO will be expanded through collaborations with partner agencies like the National Oceanic and Atmospheric Administration (NOAA), which is deriving aerosol products that can distinguish between smoke and dust particles and offer insights into their altitude and concentration.
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      On May 5, TEMPO measured NO2 emissions over the Twin Cities in the center of Minnesota during morning rush hour. The NO2 increases seen mid-day through the early evening hours are illustrated by the red and black shaded areas at the Red River Valley along the North Dakota state line. These levels are driven by emissions from the soils in agriculturally rich areas. Agricultural soil emissions are influenced by environmental factors like temperature and moisture as well as fertilizer application. Small fires and enhancements from mining activities can also be seen popping up across the region through the afternoon.Trent Schindler/NASA's Scientific Visualization Studio “These datasets are being used to inform the public of rush-hour pollution, air quality alerts, and the movement of smoke from forest fires,” said Xiong Liu, TEMPO’s principal investigator at the Center for Astrophysics Harvard & Smithsonian. “The library will soon grow with the important addition of aerosol products. Users will be able to use these expanded TEMPO products for air quality monitoring, improving forecast models, deriving pollutant amounts in emissions and many other science applications.”
      The TEMPO mission detects and highlights movement of smoke originating from fires burning in Manitoba on June 2. Seen in purple hues are observations made by TEMPO in the ultraviolet spectrum compared to Advanced Baseline Imagers (ABIs) on NOAA’s GOES-R series of weather satellites that do not have the needed spectral coverage. The NOAA GOES-R data paired with NASA’s TEMPO data enhance state and local agencies’ ability to provide near-real-time smoke and dust impacts in local air quality forecasts.NOAA/NESDIS/Center for Satellite Applications and Research “The TEMPO data validation has truly been a community effort with over 20 agencies at the federal and international level, as well as a community of over 200 scientists at research and academic institutions,” Judd added. “I look forward to seeing how TEMPO data will help close knowledge gaps about the timing, sources, and evolution of air pollution from this unprecedented space-based view.”
      An agency review will take place in the fall to assess TEMPO’s achievements and extended mission goals and identify lessons learned that can be applied to future missions.
      The TEMPO mission is part of NASA’s Earth Venture Instrument program, which includes small, targeted science investigations designed to complement NASA’s larger research missions. The instrument also forms part of a virtual constellation of air quality monitors for the Northern Hemisphere which includes South Korea’s Geostationary Environment Monitoring Spectrometer and ESA’s (European Space Agency) Sentinel-4 satellite. TEMPO was built by BAE Systems Inc., Space & Mission Systems (formerly Ball Aerospace). It flies onboard the Intelsat 40e satellite built by Maxar Technologies. The TEMPO Instrument Operations Center and the Science Data Processing Center are operated by the Smithsonian Astrophysical Observatory, part of the Center for Astrophysics | Harvard & Smithsonian in Cambridge.


      For more information about the TEMPO instrument and mission, visit:
      https://science.nasa.gov/mission/tempo/

      About the Author
      Charles G. Hatfield
      Science Public Affairs Officer, NASA Langley Research Center
      Share
      Details
      Last Updated Jul 03, 2025 LocationNASA Langley Research Center Related Terms
      Tropospheric Emissions: Monitoring of Pollution (TEMPO) Earth Earth Science Earth Science Division General Langley Research Center Missions Science Mission Directorate Explore More
      2 min read Hubble Observations Give “Missing” Globular Cluster Time to Shine
      A previously unexplored globular cluster glitters with multicolored stars in this NASA Hubble Space Telescope…
      Article 15 minutes ago 5 min read NASA Advances Pressure Sensitive Paint Research Capability
      Article 1 hour ago 5 min read How NASA’s SPHEREx Mission Will Share Its All-Sky Map With the World 
      NASA’s newest astrophysics space telescope launched in March on a mission to create an all-sky…
      Article 1 day ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      Explore Hubble Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered Hubble and Artificial Intelligence Explore the Night Sky Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts Multimedia Images Videos Sonifications Podcasts e-Books Online Activities 3D Hubble Models Lithographs Fact Sheets Posters Hubble on the NASA App Glossary News Hubble News Social Media Media Resources More 35th Anniversary Online Activities 2 min read
      Hubble Observations Give “Missing” Globular Cluster Time to Shine
      This NASA Hubble Space Telescope image features a dense and dazzling array of blazing stars that form globular cluster ESO 591-12. NASA, ESA, and D. Massari (INAF — Osservatorio di Astrofisica e Scienza dello Spazio); Processing: Gladys Kober (NASA/Catholic University of America)
      Download this image

      A previously unexplored globular cluster glitters with multicolored stars in this NASA Hubble Space Telescope image. Globular clusters like this one, called ESO 591-12 or Palomar 8, are spherical collections of tens of thousands to millions of stars tightly bound together by gravity. Globular clusters generally form early in the galaxies’ histories in regions rich in gas and dust. Since the stars form from the same cloud of gas as it collapses, they typically hover around the same age. Strewn across this image of ESO 591-12 are a number of red and blue stars. The colors indicate their temperatures; red stars are cooler, while the blue stars are hotter.
      Hubble captured the data used to create this image of ESO 591-12 as part of a study intended to resolve individual stars of the entire globular cluster system of the Milky Way. Hubble revolutionized the study of globular clusters since earthbound telescopes are unable to distinguish individual stars in the compact clusters. The study is part of the Hubble Missing Globular Clusters Survey, which targets 34 confirmed Milky Way globular clusters that Hubble has yet to observe.
      The program aims to provide complete observations of ages and distances for all of the Milky Way’s globular clusters and investigate fundamental properties of still-unexplored clusters in the galactic bulge or halo. The observations will provide key information on the early stages of our galaxy, when globular clusters formed.
      Explore More

      Hubble’s Star Clusters


      Exploring the Birth of Stars

      Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contact:
      Claire Andreoli
      NASA’s Goddard Space Flight Center, Greenbelt, MD
      claire.andreoli@nasa.gov
      Share








      Details
      Last Updated Jul 03, 2025 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms
      Hubble Space Telescope Astrophysics Astrophysics Division Galaxies, Stars, & Black Holes Globular Clusters Goddard Space Flight Center Star Clusters Stars Keep Exploring Discover More Topics From Hubble
      Hubble Space Telescope


      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


      Hubble’s Cosmic Adventure



      Hubble’s Night Sky Challenge



      Hubble’s 35th Anniversary


      View the full article
    • By NASA
      NASA Astronauts Send Fourth of July Wishes From the International Space Station
    • By Space Force
      Space Systems Command laid the groundwork for enhanced weather, research, development and prototyping capabilities with the USSF-178 National Security Space Launch Phase 3 Lane 1 task order.
      View the full article
    • By NASA
      The four crew members of NASA’s SpaceX Crew-11 mission to the International Space Station train inside a SpaceX Dragon spacecraft in Hawthorne, California. From left to right: Roscosmos cosmonaut Oleg Platonov, NASA astronauts Mike Fincke and Zena Cardman, and JAXA astronaut Kimiya Yui.Credit: SpaceX NASA and its partners will discuss the upcoming crew rotation to the International Space Station during a pair of news conferences on Thursday, July 10, from the agency’s Johnson Space Center in Houston.

      First is an overview news conference at 12 p.m. EDT with mission leadership discussing final launch and mission preparations on the agency’s YouTube channel.
      Next, crew will participate in a news conference at 2 p.m. on NASA’s YouTube channel, followed by individual astronaut interviews at 3 p.m. This is the final media opportunity with Crew-11 before they travel to NASA’s Kennedy Space Center in Florida for launch.

      The Crew-11 mission, targeted to launch in late July/early August, will carry NASA astronauts Zena Cardman and Mike Fincke, JAXA (Japan Aerospace Exploration Agency) astronaut Kimiya Yui, and Roscosmos cosmonaut Oleg Platonov to the orbiting laboratory. The crew will launch aboard a SpaceX Dragon spacecraft on the company’s Falcon 9 rocket from Launch Complex 39A.

      United States-based media seeking to attend in person must contact the NASA Johnson newsroom no later than 5 p.m. on Monday, July 7, at 281-483-5111 or jsccommu@mail.nasa.gov. A copy of NASA’s media accreditation policy is available online.
      Any media interested in participating in the news conferences by phone must contact the Johnson newsroom by 9:45 a.m. the day of the event. Media seeking virtual interviews with the crew must submit requests to the Johnson newsroom by 5 p.m. on Monday, July 7.

      Briefing participants are as follows (all times Eastern and subject to change based on real-time operations):

      12 p.m.: Mission Overview News Conference
      Steve Stich, manager, Commercial Crew Program, NASA Kennedy Bill Spetch, operations integration manager, International Space Station Program, NASA Johnson NASA’s Space Operations Mission Directorate representative Sarah Walker, director, Dragon Mission Management, SpaceX Mayumi Matsuura, vice president and director general, Human Spaceflight Technology Directorate, JAXA 2 p.m.: Crew News Conference
      Zena Cardman, Crew-11 commander, NASA Mike Fincke, Crew-11 pilot, NASA Kimiya Yui, Crew-11 mission specialist, JAXA Oleg Platonov, Crew-11 mission specialist, Roscosmos 3 p.m.: Crew Individual Interview Opportunities
      Crew-11 members available for a limited number of interviews
      Selected as a NASA astronaut in 2017, Cardman will conduct her first spaceflight. The Williamsburg, Virginia, native holds a bachelor’s degree in Biology and a master’s in Marine Sciences from the University of North Carolina at Chapel Hill. At the time of selection, she was pursuing a doctorate in geosciences. Cardman’s geobiology and geochemical cycling research focused on subsurface environments, from caves to deep sea sediments. Since completing initial training, Cardman has supported real-time station operations and lunar surface exploration planning. Follow @zenanaut on X and @zenanaut on Instagram.

      This will be Fincke’s fourth trip to the space station, having logged 382 days in space and nine spacewalks during Expedition 9 in 2004, Expedition 18 in 2008, and STS-134 in 2011, the final flight of space shuttle Endeavour. Throughout the past decade, Fincke has applied his expertise to NASA’s Commercial Crew Program, advancing the development and testing of the SpaceX Dragon spacecraft and Boeing Starliner spacecraft toward operational certification. The Emsworth, Pennsylvania, native is a graduate of the United States Air Force Test Pilot School and holds bachelors’ degrees from the Massachusetts Institute of Technology, Cambridge, in both aeronautics and astronautics, as well as Earth, atmospheric and planetary sciences. He also has a master’s degree in aeronautics and astronautics from Stanford University in California. Fincke is a retired U.S. Air Force colonel with more than 2,000 flight hours in over 30 different aircraft. Follow @AstroIronMike on X and Instagram.

      With 142 days in space, this will be Yui’s second trip to the space station. After his selection as a JAXA astronaut in 2009, Yui flew as a flight engineer for Expedition 44/45 and became the first Japanese astronaut to capture JAXA’s H-II Transfer Vehicle using the station’s robotic arm. In addition to constructing a new experimental environment aboard Kibo, he conducted a total of 21 experiments for JAXA. In November 2016, Yui was assigned as chief of the JAXA Astronaut Group. He graduated from the School of Science and Engineering at the National Defense Academy of Japan in 1992. He later joined the Air Self-Defense Force at the Japan Defense Agency (currently the Ministry of Defense). In 2008, Yui joined the Air Staff Office at the Ministry of Defense as a lieutenant colonel. Follow @astro_kimiya on X.

      The Crew-11 mission also will be Platonov’s first spaceflight. Before his selection as a cosmonaut in 2018, Platonov earned a degree in engineering from Krasnodar Air Force Academy in aircraft operations and air traffic management. He also earned a bachelor’s degree in state and municipal management in 2016 from the Far Eastern Federal University in Vladivostok, Russia. Assigned as a test cosmonaut in 2021, he has experience in piloting aircraft, zero gravity training, scuba diving, and wilderness survival.
      For more information about the mission, visit:
      https://www.nasa.gov/commercialcrew
      -end-
      Claire O’Shea / Joshua Finch
      Headquarters, Washington
      202-358-1100
      claire.a.o’shea@nasa.gov / joshua.a.finch@nasa.gov
      Sandra Jones / Joseph Zakrzewski
      Johnson Space Center, Houston
      281-483-5111
      sandra.p.jones@nasa.gov / Joseph.a.zakrzewski@nasa.gov
      Share
      Details
      Last Updated Jul 02, 2025 LocationNASA Headquarters Related Terms
      Humans in Space ISS Research Opportunities For International Participants to Get Involved View the full article
  • Check out these Videos

×
×
  • Create New...