Jump to content

15 Years Ago: First Time all Partners Represented aboard the International Space Station


NASA

Recommended Posts

  • Publishers

From May 29 to July 17, 2009, for the first time in its history, each of the five partner agencies participating in the International Space Station Program had a crew member living and working aboard the orbiting facility at the same time. The period also marked the beginning of six-person crew habitation, greatly increasing the time available for utilization. The addition of the international partner elements and life support systems to enable the larger crew size made this 49-day event possible. Although international partner crew members routinely live and work aboard the station, its crew size now expanded to seven, having all the partners represented at the same time remains a unique event in the space station’s history.

Plaque commemorating the signing of the 1988 Inter-Governmental Agreement (IGA) governing the International Space Station partnership Signatories of the 1998 IGA visit the Space Station Processing Facility at NASA’s Kennedy Space Center in Florida, posing in front of the Unity Node 1 module being prepared for launch Joint NASA-Roscosmos crew of STS-88, the first space station assembly mission
Left: Plaque commemorating the signing of the 1988 Inter-Governmental Agreement (IGA) governing the International Space Station partnership. Middle: Signatories of the 1998 IGA visit the Space Station Processing Facility at NASA’s Kennedy Space Center in Florida, posing in front of the Unity Node 1 module being prepared for launch. Right: Joint NASA-Roscosmos crew of STS-88, the first space station assembly mission.

The International Space Station as we know it came into existence in 1993 with the merging of Space Station Freedom, a partnership among the United States, Canada, Japan, and the European Space Agency (ESA), with Russia’s planned Mir-2 space station. In January 1998, representatives of these space agencies met at NASA’s Kennedy Space Center in Florida and signed the Intergovernmental Agreement (IGA) that established the framework for use of the orbiting laboratory. The IGA stipulated the contributions of each agency to the program that entitled them commensurate utilization of the research facility as well as long-duration crew member flight opportunities, beginning when their elements had reached the station. Separate agreements covered the flights of International Partner astronauts on space shuttle assembly flights, usually to accompany elements from their agencies. In orbit construction of the space station began 11 months after the signing of the IGA. From the first assembly mission in December 1998 to March 2001, all components belonged to either NASA or Roscosmos, a fact reflected in the makeup of early space shuttle and expedition crews. The crew of the STS-88, the first space shuttle assembly mission, included five NASA astronauts and cosmonaut Sergei K. Krikalev representing Roscosmos.

STS-96 included Julie Payette, third from left, the first Canadian Space Agency astronaut to visit the space station STS-92 included Koichi Wakata, right, the first astronaut from the Japan Aerospace Exploration Agency to visit the space station The joint NASA-Roscosmos space station Expedition 1 crew
Left: STS-96 included Julie Payette, third from left, the first Canadian Space Agency astronaut to visit the space station. Middle: STS-92 included Koichi Wakata, right, the first astronaut from the Japan Aerospace Exploration Agency to visit the space station. Right: The joint NASA-Roscosmos space station Expedition 1 crew.

As early assembly continued, select space shuttle missions included International Partner crew members. The Canadian Space Agency’s (CSA) first astronaut to visit the space station, Julie Payette, flew as one of the seven crew members on the second assembly flight, STS-96 in May-June 1999. The first astronaut from the Japan Aerospace Exploration Agency (JAXA) to visit the station, Koichi Wakata, flew on the fifth assembly flight, STS-92 in October 2000. When the Expedition 1 crew arrived to begin permanent habitation of the space station in November 2000, the crew consisted of NASA astronaut William M. Shepherd, and Roscosmos cosmonauts Krikalev  and Yuri P. Gidenzko. The next six expeditions maintained the two-and-one crew composition, alternating between expeditions, until the impacts from the Columbia accident reduced crew size to two until Expedition 13. During this time, NASA and Roscosmos each had one crew member on board.

STS-100 included Umberto Guidoni, center, the first European Space Agency (ESA) astronaut to visit the space station Expedition 13 included Thomas A. Reiter, left, the first ESA astronaut to serve as a long-duration crew member on the space station STS-119 delivered Koichi Wakata, right, the first astronaut from the Japanese Aerospace Exploration Agency to serve as a long-duration crewmember on the space station
Left: STS-100 included Umberto Guidoni, center, the first European Space Agency (ESA) astronaut to visit the space station. Middle: Expedition 13 included Thomas A. Reiter, left, the first ESA astronaut to serve as a long-duration crew member on the space station. Right: STS-119 delivered Koichi Wakata, right, the first astronaut from the Japanese Aerospace Exploration Agency to serve as a long-duration crewmember on the space station.

The first ESA astronaut to visit the space station, Umberto Guidoni from Italy, served as a mission specialist on STS-100 in April 2001. The seven-member crew also included CSA’s Christopher A. Hadfield, who accompanied and helped install the Canadian Space Station Remote Manipulator System, and Yuri V. Lonchakov from Roscosmos, making the STS-100 crew the most internationally diverse shuttle assembly crew. Thomas A. Reiter from Germany arrived at the station aboard STS-121 in July 2006, joining Expedition 13 as ESA’s first long-duration resident crew member, and also returning the onboard crew size back to three. Wakata arrived at the station on STS-119 in March 2009 as JAXA’s first long-duration crew member, joining Expedition 19’s Lonchakov and E. Michael Fincke. Wakata’s arrival set in motion the steps leading to the unique occasion of having each of the five partners with a crew member living and working aboard the space station at the same time.

Expedition 19 crew of Koichi Wakata of the Japan Aerospace Exploration Agency, left, NASA astronaut E. Michael Fincke, and Yuri V. Lonchakov of Roscosmos Gennadi I. Padalka of Roscosmos, left, and NASA astronaut Michael M. Barratt of Expedition 19 Canadian Space Agency astronaut Robert B. Thirsk, left, Roman Y. Romanenko of Roscosmos, and European Space Agency astronaut Frank L. DeWinne of Expedition 20
Left: Expedition 19 crew of Koichi Wakata of the Japan Aerospace Exploration Agency, left, NASA astronaut E. Michael Fincke, and Yuri V. Lonchakov of Roscosmos. Middle: Gennadi I. Padalka of Roscosmos, left, and NASA astronaut Michael M. Barratt of Expedition 19. Right: Canadian Space Agency astronaut Robert B. Thirsk, left, Roman Y. Romanenko of Roscosmos, and European Space Agency astronaut Frank L. DeWinne of Expedition 20.

Eleven days after Wakata’s arrival, Soyuz TMA-14 delivered replacement Expedition 19 crew members NASA astronaut Michael M. Barratt and Gennadi I. Padalka of Roscosmos. On May 29, ESA’s Frank L. DeWinne and CSA’s Robert B. Thirsk, along with Roman Y. Romanenko of Roscosmos arrived aboard Soyuz TMA-15, and all five space station partners had representatives on board. Their arrival began Expedition 20 and the first period of six-person crew residency.

Preflight crew photo of Expedition 20, the first six-person crew on the space station – Michael M. Barratt (NASA), Frank L. DeWinne (ESA), Robert B. Thirsk (CSA), Koichi Wakata (JAXA), Gennadi I. Padalka (Roscosmos), and Roman Y. Romanenko (Roscosmos) Inflight photo of the Expedition 20 crew The Expedition 20 crew members put their heads together
Left: Preflight crew photo of Expedition 20, the first six-person crew on the space station – Michael M. Barratt (NASA), Frank L. DeWinne (ESA), Robert B. Thirsk (CSA), Koichi Wakata (JAXA), Gennadi I. Padalka (Roscosmos), and Roman Y. Romanenko (Roscosmos). Middle: Inflight photo of the Expedition 20 crew. Right: The Expedition 20 crew members put their heads together.

The period of full international representation proved brief, however, lasting just 49 days, and remains unique to this day. Wakata broke up the party on July 17 when he exchanged places with NASA astronaut Timothy L. Kopra who arrived aboard STS-127. Barratt and Padalka left on Oct. 11, replaced by another NASA-Roscosmos crew. Finally, Romanenko, DeWinne, and Thirsk left on Dec. 1, replaced after a brief gap by a crew consisting of a NASA astronaut, a JAXA astronaut, and a representative of Roscosmos.

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By Amazing Space
      The Ghost Ship: Star Trek Fan Fiction - Mystery In Space
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA MSFC HERC is the annual engineering competition – one of NASA’s longest standing challenges – held its concluding event April 19 and April 20, at the U.S. Space & Rocket Center in Huntsville, near NASA’s Marshall Space Flight Center.NASA NASA has selected 75 student teams to begin an engineering design challenge to build rovers that will compete next spring at the U.S. Space and Rocket Center near the agency’s Marshall Space Flight Center in Huntsville, Alabama. The competition is one of the agency’s Artemis Student Challenges, encouraging students to pursue degrees and careers in science, technology, engineering, and mathematics (STEM).
      Recognized as NASA’s leading international student challenge, the 31st annual Human Exploration Rover Challenge (HERC) aims to put competitors in the mindset of NASA’s Artemis campaign as they pitch an engineering design for a lunar terrain vehicle which simulates astronauts piloting a vehicle, exploring the lunar surface while overcoming various obstacles.
      Participating teams represent 35 colleges and universities, 38 high schools, and two middle schools from 20 states, Puerto Rico, and 16 other nations from around the world. The 31st annual Human Exploration Rover Challenge (HERC) is scheduled to begin on April 11, 2025. The challenge is managed by NASA’s Southeast Regional Office of STEM Engagement at NASA Marshall.
      Following a 2024 competition that garnered international attention, NASA expanded the challenge to include a remote-control division, Remote-Operated Vehicular Research, and invited middle school students to participate. The 2025 HERC Handbook includes guidelines for the new remote-control division and updates for the human-powered division.
      NASA’s Artemis Student Challenges reflects the goals of the Artemis campaign, which seeks to land the first woman and first person of color on the Moon while establishing a long-term presence for science and exploration.
      More than 1,000 students with 72 teams from around the world participated in the 2024 challenge as HERC celebrated its 30th anniversary as a NASA competition. Since its inception in 1994, more than 15,000 students have participated in HERC – with many former students now working at NASA, or within the aerospace industry.    
      To learn more about HERC, please visit: 
      HERC Website Taylor Goodwin
      Marshall Space Flight Center, Huntsville, Ala.
      256.544.0034
      taylor.goodwin@nasa.gov
      Share
      Details
      Last Updated Oct 04, 2024 EditorBeth RidgewayLocationMarshall Space Flight Center Related Terms
      Marshall Space Flight Center Explore More
      20 min read The Marshall Star for October 2, 2024
      Article 2 days ago 29 min read The Marshall Star for September 25, 2024
      Article 1 week ago 3 min read NASA Michoud Continues Work on Evolved Stage of SLS Rocket for Future Artemis Missions
      Article 1 week ago Keep Exploring Discover Related Topics
      NASA Student Launch Challenge
      Middle/high school and college-level student teams design, build, test, and launch a high-powered rocket carrying a scientific or engineering payload.
      NASA Human Exploration Rover Challenge
      Teams of high school and college students design, develop, build, and test human-powered rovers capable of traversing challenging terrain.
      NASA STEM Opportunities and Activities For Students
      Marshall Space Flight Center
      View the full article
    • By Space Force
      The U.S. Space Force celebrates its fifth year of existence securing the nation’s interest in, from and to space.
      View the full article
    • By NASA
      The SpaceX Dragon spacecraft approaching the International Space StationCredits: NASA Media accreditation is open for the next launch to deliver NASA science investigations, supplies, and equipment to the International Space Station. This launch is the 31st SpaceX commercial resupply services mission to the orbital laboratory for the agency and will lift off on the company’s Falcon 9 rocket.
      NASA and SpaceX are targeting no earlier than Wednesday, Oct. 30, to launch the SpaceX Dragon spacecraft from Launch Complex 39A at NASA’s Kennedy Space Center in Florida.
      Credentialing to cover prelaunch and launch activities is open to U.S. media. The application deadline for U.S. citizens is 11:59 p.m. EDT, Tuesday, Oct. 15. All accreditation requests must be submitted online at:
      https://media.ksc.nasa.gov
      Credentialed media will receive a confirmation email upon approval. NASA’s media accreditation policy is available online. For questions about accreditation, or to request special logistical support, email: ksc-media-accreditat@mail.nasa.gov. For other questions, please contact NASA’s Kennedy Space Center newsroom at: 321-867-2468.
      Para obtener información sobre cobertura en español en el Centro Espacial Kennedy o si desea solicitor entrevistas en español, comuníquese con Antonia Jaramillo o Messod Bendayan a: antonia.jaramillobotero@nasa.gov o messod.c.bendayan@nasa.gov.
      Each resupply mission to the station delivers scientific investigations in the areas of biology and biotechnology, Earth and space science, physical sciences, and technology development and demonstrations. Cargo resupply from U.S. companies ensures a national capability to deliver scientific research to the space station, significantly increasing NASA’s ability to conduct new investigations aboard humanity’s laboratory in space.
      In addition to food, supplies, and equipment for the crew, Dragon will deliver several new experiments, including the Coronal Diagnostic Experiment, to examine solar wind and how it forms. Dragon also delivers Antarctic moss to observe the combined effects of cosmic radiation and microgravity on plants. Other investigations aboard include a device to test cold welding of metals in microgravity, and an investigation that studies how space impacts different materials.
      Crews have occupied the space station continuously since November 2000. In that time, 280 people from 23 countries have visited the orbital outpost. The space station is a springboard to NASA’s next great leap in exploration, including future missions to the Moon under Artemis, and ultimately, human exploration of Mars.
      Learn more about NASA’s commercial resupply missions at:
      https://www.nasa.gov/station
      -end-
      Claire O’Shea / Josh Finch
      Headquarters, Washington
      202-358-1100
      claire.a.o’shea@nasa.gov / joshua.a.finch@nasa.gov
      Stephanie Plucinsky / Steven Siceloff / Danielle Sempsrott
      Kennedy Space Center, Fla.
      321-876-2468
      stephanie.n.plucinsky@nasa.gov / steven.p.siceloff@nasa.gov / danielle.c.sempsrott@nasa.gov
      Sandra Jones
      Johnson Space Center, Houston
      281-483-5111
      sandra.p.jones@nasa.gov
      Share
      Details
      Last Updated Oct 03, 2024 LocationNASA Headquarters Related Terms
      International Space Station (ISS) Commercial Resupply ISS Research Johnson Space Center Kennedy Space Center SpaceX Commercial Resupply View the full article
    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA’s Psyche spacecraft is depicted receiving a laser signal from the Deep Space Optical Communications uplink ground station at JPL’s Table Mountain Facility in this artist’s concept. The DSOC experiment consists of an uplink and downlink station, plus a flight laser transceiver flying with Psyche.NASA/JPL-Caltech The Deep Space Optical Communications tech demo has completed several key milestones, culminating in sending a signal to Mars’ farthest distance from Earth.
      NASA’s Deep Space Optical Communications technology demonstration broke yet another record for laser communications this summer by sending a laser signal from Earth to NASA’s Psyche spacecraft about 290 million miles (460 million kilometers) away. That’s the same distance between our planet and Mars when the two planets are farthest apart.
      Soon after reaching that milestone on July 29, the technology demonstration concluded the first phase of its operations since launching aboard Psyche on Oct. 13, 2023.
      “The milestone is significant. Laser communication requires a very high level of precision, and before we launched with Psyche, we didn’t know how much performance degradation we would see at our farthest distances,” said Meera Srinivasan, the project’s operations lead at NASA’s Jet Propulsion Laboratory in Southern California. “Now the techniques we use to track and point have been verified, confirming that optical communications can be a robust and transformative way to explore the solar system.”
      Managed by JPL, the Deep Space Optical Communications experiment consists of a flight laser transceiver and two ground stations. Caltech’s historic 200-inch (5-meter) aperture Hale Telescope at Caltech’s Palomar Observatory in San Diego County, California, acts as the downlink station to which the laser transceiver sends its data from deep space. The Optical Communications Telescope Laboratory at JPL’s Table Mountain facility near Wrightwood, California, acts as the uplink station, capable of transmitting 7 kilowatts of laser power to send data to the transceiver.
      This visualization shows Psyche’s position on July 29 when the uplink station for NASA’s Deep Space Optical Communications sent a laser signal about 290 million miles to the spacecraft. See an interactive version of the Psyche spacecraft in NASA’s Eyes on the Solar System.NASA/JPL-Caltech By transporting data at rates up to 100 times higher than radio frequencies, lasers can enable the transmission of complex scientific information as well as high-definition imagery and video, which are needed to support humanity’s next giant leap when astronauts travel to Mars and beyond.
      As for the spacecraft, Psyche remains healthy and stable, using ion propulsion to accelerate toward a metal-rich asteroid in the main asteroid belt between Mars and Jupiter.
      Exceeding Goals
      The technology demonstration’s data is sent to and from Psyche as bits encoded in near-infrared light, which has a higher frequency than radio waves. That higher frequency enables more data to be packed into a transmission, allowing far higher rates of data transfer.
      Even when Psyche was about 33 million miles (53 million kilometers) away — comparable to Mars’ closest approach to Earth — the technology demonstration could transmit data at the system’s maximum rate of 267 megabits per second. That bit rate is similar to broadband internet download speeds. As the spacecraft travels farther away, the rate at which it can send and receive data is reduced, as expected.
      On June 24, when Psyche was about 240 million miles (390 million kilometers) from Earth — more than 2½ times the distance between our planet and the Sun — the project achieved a sustained downlink data rate of 6.25 megabits per second, with a maximum rate of 8.3 megabits per second. While this rate is significantly lower than the experiment’s maximum, it is far higher than what a radio frequency communications system using comparable power can achieve over that distance.
      This Is a Test
      The goal of Deep Space Optical Communications is to demonstrate technology that can reliably transmit data at higher speeds than other space communication technologies like radio frequency systems. In seeking to achieve this goal, the project had an opportunity to test unique data sets like art and high-definition video along with engineering data from the Psyche spacecraft. For example, one downlink included digital versions of Arizona State University’s “Psyche Inspired” artwork, images of the team’s pets, and a 45-second ultra-high-definition video that spoofs television test patterns from the previous century and depicts scenes from Earth and space.
      This 45-second ultra-high-definition video was streamed via laser from deep space by NASA’s Deep Space Optical Communications technology demonstration on June 24, when the Psyche spacecraft was 240 million miles from Earth. NASA/JPL-Caltech The technology demonstration beamed the first ultra-high-definition video from space, featuring a cat named Taters, from the Psyche spacecraft to Earth on Dec. 11, 2023, from 19 million miles away. (Artwork, images, and videos were uploaded to Psyche and stored in its memory before launch.)
      “A key goal for the system was to prove that the data-rate reduction was proportional to the inverse square of distance,” said Abi Biswas, the technology demonstration’s project technologist at JPL. “We met that goal and transferred huge quantities of test data to and from the Psyche spacecraft via laser.” Almost 11 terabits of data have been downlinked during the first phase of the demo.
      The flight transceiver is powered down and will be powered back up on Nov. 4. That activity will prove that the flight hardware can operate for at least a year.
      “We’ll power on the flight laser transceiver and do a short checkout of its functionality,” said Ken Andrews, project flight operations lead at JPL. “Once that’s achieved, we can look forward to operating the transceiver at its full design capabilities during our post-conjunction phase that starts later in the year.”
      More About Deep Space Optical Communications
      This demonstration is the latest in a series of optical communication experiments funded by the Space Technology Mission Directorate’s Technology Demonstration Missions Program managed at NASA’s Marshall Space Flight Center in Huntsville, Alabama, and the agency’s SCaN (Space Communications and Navigation) program within the Space Operations Mission Directorate. Development of the flight laser transceiver is supported by MIT Lincoln Laboratory, L3 Harris, CACI, First Mode, and Controlled Dynamics Inc. Fibertek, Coherent, Caltech Optical Observatories, and Dotfast support the ground systems. Some of the technology was developed through NASA’s Small Business Innovation Research program.
      For more information about the laser communications demo, visit:
      https://www.jpl.nasa.gov/missions/dsoc
      NASA’s Optical Comms Demo Transmits Data Over 140 Million Miles The NASA Cat Video Explained 5 Things to Know About NASA’s Deep Space Optical Communications News Media Contacts
      Ian J. O’Neill
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-354-2649
      ian.j.oneill@jpl.nasa.gov
      2024-130
      Share
      Details
      Last Updated Oct 03, 2024 Related Terms
      Deep Space Optical Communications (DSOC) Jet Propulsion Laboratory Psyche Mission Space Communications & Navigation Program Space Operations Mission Directorate Space Technology Mission Directorate Tech Demo Missions Explore More
      3 min read How NASA Astronauts Vote from Space Aboard International Space Station 
      Article 23 mins ago 2 min read The Science of the Perfect Cup for Coffee 
      Material research is behind the design of a temperature-regulating mug
      Article 6 days ago 1 min read Let It Go: (After Latching) Challenge
      Article 1 week ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
  • Check out these Videos

×
×
  • Create New...