Jump to content

NASA Marshall Team Supports Safe Travels for Space Station Science


Recommended Posts

  • Publishers
Posted

3 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

A man wearing blue gloves and a gray visor with a magnifying glass built in it leans against a black table while looking at a specimen. Next to him, a second man wearing black glasses is standing while holding a pen and a stapled stack of papers.
NASA Marshall Space Flight Center’s payload technician Chris Honea, left, and quality assurance specialist Keith Brandon, right, on Feb. 29 carefully inspect the temperature sensors that help gather data and monitor progress during a crystals experiment. The zinc selenide-based crystals were grown on the International Space Station as part of an experiment to see how gravity affects their structure or growth, then de-integrated and inspected in Marshall’s Space Systems Integration & Test Facility (SSITF).

By Jessica Barnett 

During the International Space Station’s more than 25 years of operation, there have been more than 3,000 experiments conducted aboard the microgravity laboratory, and making sure scientific samples are kept safe through launch, spaceflight, experimentation, and the return trip to Earth takes a great deal of planning, testing, and preparation across NASA.

In February, team members at NASA’s Marshall Space Flight Center in Huntsville, Alabama, handled the de-integration of zinc selenide-based crystals grown on the space station as part of an experiment to study how a lack of gravity might affect the crystals’ growth and structure. The experiment was conducted using six sample cartridge assemblies heated up to 1,200 degrees Celsius (2,192 degrees Fahrenheit) inside the Materials Science Laboratory of the Materials Science Research Rack on the space station.

John Luke Bili, lead systems test engineer for the sample cartridge assemblies within Marshall’s Instrument Development, Integration, and Test Branch, begins the process by working with engineers, scientists, project personnel, and the experiment’s principal investigator to create an ampoule, or sealed glass vial, to use as a sample container.

“We’ll take the ampoule and do some ground testing, like a normal flight integration,” Bili said. “We’ll assemble it with the hardware we have, then we are responsible for completing different mitigation efforts to prepare for sealing the ampoule up and processing it at the required high temperatures.”

The team exposes the test article to extreme heat and pressure using a duplicate of the furnace on the space station, allowing them to also test the experiment’s software.

We have people in our branch that will write the code to run it on the space station automatically. We develop that code, then we work with Marshall’s Quality Department to test it.

John Luke Bili

John Luke Bili

Lead Systems Test Engineer

The zinc selenide-based crystal experiment required six sample cartridge assemblies. After a month of preparation from Marshall’s team, the assemblies traveled to NASA’s Johnson Space Center in Houston for a final round of packing before arriving at the agency’s Kennedy Space Center in Florida for launch.

The assemblies launched on NASA’s SpaceX 24th commercial resupply services mission in December 2021 and NASA’s Northrop Grumman 19th commercial resupply services mission in August 2023. Each sample took about a week to process through the space station’s lab furnace. The samples were then brought back to Earth, with three of the six arriving at Marshall on Feb. 9, 2024.

While unpacking the crystal samples, team members took photos and notes of the tubes throughout the de-integration process in Marshall’s Space Systems Integration & Test Facility. The team includes technicians with 20 to 30 years of experience, ensuring samples safely travel to and from the station and helping expand access for researchers to explore microgravity, space exposure, and future missions in low Earth orbit.

A glass tube shaped like a tall hourglass containing silver and gold crystals lies sideways upon a silver metal block on a black table.
An ampoule containing zinc selenide-based crystals rests on a table Feb. 29 in Marshall Space Flight Center’s Space Systems Integration & Test Facility. The ampoule was part of the sixth sample cartridge assembly retrieved from the International Space Station as part of an experiment to see how gravity affects the crystals’ structure or growth.

“It’s really nice having that kind of experience when we’re working on the hardware that’s going in space,” he said. “We’ve got a lot of people that are very skilled machinists that are able to help us in a moment’s notice, we have people with a really good understanding of technical tolerances and stuff like that, and we have people with a lot of varying experience doing flight hardware integration and tests.”

For more than two decades, humans have lived and worked continuously aboard the International Space Station, advancing scientific knowledge and making research breakthroughs that are not possible on Earth. The station is a critical testbed for NASA to understand and overcome the challenges of long-duration spaceflight and to expand commercial opportunities in low Earth orbit.

Learn more about the space station at:

https://nasa.gov/international-space-station/

Joel Wallace

Marshall Space Flight Center, Huntsville, Ala.

256-544-0034

joel.w.wallace@nasa.gov

Share

Details

Last Updated
May 24, 2024

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Hydrocarbon lake and methane rain clouds on Titan Jenny McElligott/eMITS NASA research has shown that cell-like compartments called vesicles could form naturally in the lakes of Saturn’s moon Titan.
      Titan is the only world apart from Earth that is known to have liquid on its surface. However, Titan’s lakes and seas are not filled with water. Instead, they contain liquid hydrocarbons like ethane and methane. 
      On Earth, liquid water is thought to have been essential for the origin of life as we know it. Many astrobiologists have wondered whether Titan’s liquids could also provide an environment for the formation of the molecules required for life – either as we know it or perhaps as we don’t know it – to take hold there.
      New NASA research, published in the International Journal of Astrobiology, outlines a process by which stable vesicles might form on Titan, based on our current knowledge of the moon’s atmosphere and chemistry. The formation of such compartments is an important step in making the precursors of living cells (or protocells).
      The process involves molecules called amphiphiles, which can self-organize into vesicles under the right conditions. On Earth, these polar molecules have two parts, a hydrophobic (water-fearing) end and a hydrophilic (water-loving) end. When they are in water, groups of these molecules can bunch together and form ball-like spheres, like soap bubbles, where the hydrophilic part of the molecule faces outward to interact with the water, thereby ‘protecting’ the hydrophobic part on the inside of the sphere. Under the right conditions, two layers can form creating a cell-like ball with a bilayer membrane that encapsulates a pocket of water on the inside.
      When considering vesicle formation on Titan, however, the researchers had to take into account an environment vastly different from the early Earth.
      Uncovering Conditions on Titan
      Huygens captured this aerial view of Titan from an altitude of 33,000 feet. ESA/NASA/JPL/University of Arizona Titan is Saturn’s largest moon and the second largest in our solar system. Titan is also the only moon in our solar system with a substantial atmosphere.
      The hazy, golden atmosphere of Titan kept the moon shrouded in mystery for much of human history. However, when NASA’s Cassini spacecraft arrived at Saturn in 2004, our views of Titan changed forever.
      Thanks to Cassini, we now know Titan has a complex meteorological cycle that actively influences the surface today. Most of Titan’s atmosphere is nitrogen, but there is also a significant amount of methane (CH4). This methane forms clouds and rain, which falls to the surface to cause erosion and river channels, filling up the lakes and seas. This liquid then evaporates in sunlight to form clouds once again.
      This atmospheric activity also allows for complex chemistry to happen. Energy from the Sun breaks apart molecules like methane, and the pieces then reform into complex organic molecules. Many astrobiologists believe that this chemistry could teach us how the molecules necessary for the origin of life formed and evolved on the early Earth.
      Building Vesicles on Titan
      The new study considered how vesicles might form in the freezing conditions of Titan’s hydrocarbon lakes and seas by focusing on sea-spray droplets, thrown upwards by splashing raindrops. On Titan, both spray droplets and the sea surface could be coated in layers of amphiphiles. If a droplet then lands on the surface of a pond, the two layers of amphiphiles meet to form a double-layered (or bilayer) vesicle, enclosing the original droplet. Over time, many of these vesicles would be dispersed throughout the pond and would interact and compete in an evolutionary process that could lead to primitive protocells.
      If the proposed pathway is happening, it would increase our understanding of the conditions in which life might be able to form. 
      “The existence of any vesicles on Titan would demonstrate an increase in order and complexity, which are conditions necessary for the origin of life,” explains Conor Nixon of NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “We’re excited about these new ideas because they can open up new directions in Titan research and may change how we search for life on Titan in the future.”
      NASA’s first mission to Titan is the upcoming Dragonfly rotorcraft, which will explore the surface of the Saturnian moon. While Titan’s lakes and seas are not a destination for Dragonfly (and the mission won’t carry the light-scattering instrument required to detect such vesicles), the mission will fly from location to location to study the moon’s surface composition, make atmospheric and geophysical measurements, and characterize the habitability of Titan’s environment.
      News Media Contacts
      Karen Fox / Molly Wasser
      Headquarters, Washington
      202-358-1600
      karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
      View the full article
    • By NASA
      Explore This Section Science Goddard Space Flight Center Linking Satellite Data and… Overview Learning Resources Science Activation Teams SME Map Opportunities More Science Activation Stories Citizen Science   4 min read
      Linking Satellite Data and Community Knowledge to Advance Alaskan Snow Science
      Seasonal snow plays a significant role in global water and energy cycles, and billions of people worldwide rely on snowmelt for water resources needs, including water supply, hydropower, agriculture, and more. Monitoring snow water equivalent (SWE) is critical for supporting these applications and for mitigating damages caused by snowmelt flooding, avalanches, and other snow-related disasters. However, our ability to measure SWE remains a challenge, particularly in northern latitudes where in situ SWE observations are sparse and satellite observations are impacted by the boreal forest and environmental conditions. Despite limited in situ SWE measurements, local residents in Arctic and sub-Arctic regions provide a vast and valuable body of place-based knowledge and observations that are essential for understanding snowpack behavior in northern regions.
      As part of a joint NASA SnowEx, NASA’s Minority University Research and Education Project (MUREP) for American Indian and Alaska Native STEM (Science, Technology, Engineering, & Mathematics) Engagement (MAIANSE), and Global Learning & Observations to Benefit the Environment (GLOBE) Program partnership, a team of scientists including NASA intern Julia White (NASA Goddard Space Flight Center, University of Alaska Fairbanks), Carrie Vuyovich (NASA Goddard Space Flight Center), Alicia Joseph (NASA Goddard Space Flight Center), and Christi Buffington (University of Alaska Fairbanks, GLOBE Implementation Office) is studying snow water equivalent (SWE) across Interior Alaska. This project combines satellite-based interferometric synthetic aperture radar (InSAR) data, primarily from the Sentinel-1 satellite, with ground-based observations from the Snow Telemetry (SNOTEL) network and GLOBE (Global Learning Observations to Benefit the Environment). Together, these data sources help the team investigate how SWE varies across the landscape and how it affects local ecosystems and communities. The team is also preparing for future integration of data from NASA’s upcoming NISAR (NASA ISRO Synthetic Aperture Radar) mission, which is expected to enhance SWE retrieval capabilities.
      After a collaborative visit to the classroom of Tammie Kovalenko in November 2024, Delta Junction junior and senior high school students in vocational agriculture (Vo Ag) classes, including members of Future Farmers of America (FFA), began collecting GLOBE data on a snowdrift located just outside their classroom. As the project progressed, students developed their own research questions. One student, Fianna Rooney, took the project even further — presenting research posters at both the GLOBE International Virtual Science Symposium (IVSS) and both the FFA Regional and National Conventions. Her work highlights the growing role of Alaskan youth in science, and how student-led inquiry can enrich both education and research outcomes. (This trip was funded by the NASA Science Activation Program’s Arctic and Earth SIGNs – STEM Integrating GLOBE & NASA – project at the University of Alaska Fairbanks.)
      In February 2025, the team collaborated with Delta Junction Junior High and High School students, along with the Delta Junction Trails Association, to conduct a GLOBE Intensive Observation Period (IOP), “Delta Junction Snowdrifts,” to collect Landcover photos, snow depth, and snow water equivalent data. Thanks to aligned interests and research goals at the Alaska Satellite Facility (ASF), the project was further expanded into Spring 2025. Collaborators from ASF and the Alaska Center for Unmanned Aircraft Systems Integration (ACUASI) collected high resolution airborne data over the snowdrift at the Delta Junction Junior and Senior High School. This complementary dataset helped strengthen connections between satellite observations and ground-based student measurements.
      This effort, led by a NASA intern, scientists, students, and Alaskan community members, highlights the power of collaboration in advancing science and education. Next steps will include collaboration with Native Alaskan communities near Delta Junction, including the Healy Lake Tribe, whose vast, generational knowledge will be of great value to deepening our understanding of Alaskan snow dynamics.
      Learn more about how NASA’s Science Activation program connects NASA science experts, real content, and experiences with community leaders to do science in ways that activate minds and promote deeper understanding of our world and beyond: https://science.nasa.gov/learn/about-science-activation/
      Julia White and Delta Junction student following GLOBE protocols for snow depth. Tori Brannan Share








      Details
      Last Updated Jul 14, 2025 Editor NASA Science Editorial Team Location Goddard Space Flight Center Related Terms
      Earth Science Goddard Space Flight Center MUREP Science Activation Explore More
      2 min read Hubble Snaps Galaxy Cluster’s Portrait


      Article


      3 days ago
      7 min read NASA’s Parker Solar Probe Snaps Closest-Ever Images to Sun
      On its record-breaking pass by the Sun late last year, NASA’s Parker Solar Probe captured…


      Article


      4 days ago
      8 min read NASA’s Webb Scratches Beyond Surface of Cat’s Paw for 3rd Anniversary


      Article


      4 days ago
      Keep Exploring Discover More Topics From NASA
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Perseverance Rover


      This rover and its aerial sidekick were assigned to study the geology of Mars and seek signs of ancient microbial…


      Parker Solar Probe


      On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona…


      Juno


      NASA’s Juno spacecraft entered orbit around Jupiter in 2016, the first explorer to peer below the planet’s dense clouds to…

      View the full article
    • By NASA
      NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute/Alex Parker This image, taken by NASA’s New Horizons spacecraft on July 14, 2015, is the most accurate natural color image of Pluto. This natural-color image results from refined calibration of data gathered by New Horizons’ color Multispectral Visible Imaging Camera (MVIC). The processing creates images that would approximate the colors that the human eye would perceive, bringing them closer to “true color” than the images released near the encounter. This single color MVIC scan includes no data from other New Horizons imagers or instruments added. The striking features on Pluto are clearly visible, including the bright expanse of Pluto’s icy, nitrogen-and-methane rich “heart,” Sputnik Planitia.
      Image credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute/Alex Parker
      View the full article
    • By Amazing Space
      Massive Solar Prominence "The Beast" Threatens Eruption? Space Weather Update July 14 2025 NASA SDO
    • By NASA
      The Axiom Mission 4 and Expedition 73 crews join together for a group portrait inside the International Space Station’s Harmony module. In the front row (from left) are Ax-4 crewmates Tibor Kapu, Peggy Whitson, Shubhanshu Shukla, and Sławosz Uznański-Wiśniewski with Expedition 73 crewmates Anne McClain and Takuya Onishi. In the rear are, Expedition 73 crewmates Alexey Zubritskiy, Kirill Peskov, Sergey Ryzhikov, Jonny Kim, and Nichole Ayers.Credit: NASA NASA will provide live coverage of the undocking and departure of the Axiom Mission 4 private astronaut mission from the International Space Station.
      The four-member astronaut crew is scheduled to undock from the space-facing port of the station’s Harmony module aboard the SpaceX Dragon spacecraft at approximately 7:05 a.m. EDT Monday, July 14, pending weather, to begin their return to Earth and splashdown off the coast of California.
      Coverage of departure operations will begin with hatch closing at 4:30 a.m. on NASA+. Learn how to watch NASA content through a variety of platforms, including social media.
      Peggy Whitson, former NASA astronaut and director of human spaceflight at Axiom Space, ISRO (Indian Space Research Organization) astronaut Shubhanshu Shukla, ESA (European Space Agency) project astronaut Sławosz Uznański-Wiśniewski of Poland, and HUNOR (Hungarian to Orbit) astronaut Tibor Kapu of Hungary, will have spent about two weeks in space at the conclusion of their mission.
      The Dragon spacecraft will return with more than 580 pounds of cargo, including NASA hardware and data from over 60 experiments conducted throughout the mission.
      NASA’s coverage is as follows (all times Eastern and subject to change based on real-time operations):
      Monday, July 14
      4:30 a.m. – Hatch closing coverage begins on NASA+.
      4:55 a.m. – Crew enters spacecraft followed by hatch closing.
      6:45 a.m. – Undocking coverage begins on NASA+, Axiom Space, and SpaceX channels.
      7:05 a.m. – Undocking
      NASA’s coverage ends approximately 30 minutes after undocking when space station joint operations with Axiom Space and SpaceX conclude. Axiom Space will resume coverage of Dragon’s re-entry and splashdown on the company’s website.
      A collaboration between NASA and ISRO allowed Axiom Mission 4 to deliver on a commitment highlighted by President Trump and Indian Prime Minister Narendra Modi to send the first ISRO astronaut to the station. The space agencies participated in five joint science investigations and two in-orbit science, technology, engineering, and mathematics demonstrations. NASA and ISRO have a long-standing relationship built on a shared vision to advance scientific knowledge and expand space collaboration.
      The private mission also carried the first astronauts from Poland and Hungary to stay aboard the space station.
      The International Space Station is a springboard for developing a low Earth orbit economy. NASA’s goal is to achieve a strong economy off the Earth where the agency can purchase services as one of many customers to meet its science and research objectives in microgravity. NASA’s commercial strategy for low Earth orbit provides the government with reliable and safe services at a lower cost, enabling the agency to focus on Artemis missions to the Moon in preparation for Mars while also continuing to use low Earth orbit as a training and proving ground for those deep space missions.
      Learn more about NASA’s commercial space strategy at:
      https://www.nasa.gov/commercial-space
      -end-
      Claire O’Shea
      Headquarters, Washington
      202-358-1100
      claire.a.o’shea@nasa.gov
      Anna Schneider
      Johnson Space Center, Houston
      281-483-5111
      anna.c.schneider@nasa.gov
      Share
      Details
      Last Updated Jul 11, 2025 LocationNASA Headquarters Related Terms
      International Space Station (ISS) Commercial Crew Commercial Space Commercial Space Programs Humans in Space ISS Research Johnson Space Center Space Operations Mission Directorate View the full article
  • Check out these Videos

×
×
  • Create New...