Members Can Post Anonymously On This Site
Clare Luckey: Shaping the Future of Mars Missions and Inspiring the Artemis Generation
-
Similar Topics
-
By NASA
Explore This Section Perseverance Home Mission Overview Rover Components Mars Rock Samples Where is Perseverance? Ingenuity Mars Helicopter Mission Updates Science Overview Objectives Instruments Highlights Exploration Goals News and Features Multimedia Perseverance Raw Images Images Videos Audio More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions Mars Home 3 min read
An Update From the 2025 Mars 2020 Science Team Meeting
A behind-the-scenes look at the annual Mars 2020 Science Team Meeting
Members of the Mars 2020 Science Team examine post-impact sediments within the Gardnos impact structure, northwest of Oslo, Norway, as part of the June 2025 Science Team Meeting. NASA/Katie Stack Morgan Written by Katie Stack Morgan, Mars 2020 Acting Project Scientist
The Mars 2020 Science Team gathered for a week in June to discuss recent science results, synthesize earlier mission observations, and discuss future plans for continued exploration of Jezero’s crater rim. It was also an opportunity to celebrate what makes this mission so special: one of the most capable and sophisticated science missions ever sent to Mars, an experienced and expert Science Team, and the rover’s many science accomplishments this past year.
We kicked off the meeting, which was hosted by our colleagues on the RIMFAX team at the University of Oslo, with a focus on our most recent discoveries on the Jezero crater rim. A highlight was the team’s in-depth discussion of spherules observed at Witch Hazel Hill, features which likely provide us the best chance of determining the origin of the crater rim rock sequence.
On the second day, we heard status updates from each of the science instrument teams. We then transitioned to a session devoted to “traverse-scale” syntheses. After 4.5 years of Perseverance on Mars and more than 37 kilometers of driving (more than 23 miles), we’re now able to analyze and integrate science datasets across the entire surface mission, looking for trends through space and time within the Jezero rock record. Our team also held a poster session, which was a great opportunity for in-person and informal scientific discussion.
The team’s modern atmospheric and environmental investigations were front and center on Day 3. We then rewound the clock, hearing new and updated analyses of data acquired during Perseverance’s earlier campaigns in Jezero’s Margin unit, crater floor, and western fan. The last day of the meeting was focused entirely on future plans for the Perseverance rover, including a discussion of our exploration and sampling strategy during the Crater Rim Campaign. We also looked further afield, considering where the rover might explore over the next few years.
Following the meeting, the Science Team took a one-day field trip to visit Gardnos crater, a heavily eroded impact crater with excellent examples of impact melt breccia and post-impact sediment fill. The team’s visit to Gardnos offered a unique opportunity to see and study impact-generated rock units like those expected on the Jezero crater rim and to discuss the challenges we have recognizing similar units with the rover on Mars. Recapping our Perseverance team meetings has been one of my favorite yearly traditions (see summaries from our 2022, 2023, and 2024 meetings) and I look forward to reporting back a year from now. As the Perseverance team tackles challenges in the year to come, we can seek inspiration from one of Norway’s greatest polar explorers, Fridtjof Nansen, who said while delivering his Nobel lecture, “The difficult is that which can be done at once; the impossible is that which takes a little longer.”
Share
Details
Last Updated Jul 01, 2025 Related Terms
Blogs Explore More
2 min read Curiosity Blog, Sols 4584–4585: Just a Small Bump
Article
1 hour ago
4 min read Curiosity Blog, Sols 4582-4583: A Rock and a Sand Patch
Article
3 days ago
2 min read Curiosity Blog, Sols 4580-4581: Something in the Air…
Article
5 days ago
Keep Exploring Discover More Topics From NASA
Mars
Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…
All Mars Resources
Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…
Rover Basics
Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…
Mars Exploration: Science Goals
The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…
View the full article
-
By NASA
An unexpectedly strong solar storm rocked our planet on April 23, 2023, sparking auroras as far south as southern Texas in the U.S. and taking the world by surprise.
Two days earlier, the Sun blasted a coronal mass ejection (CME) — a cloud of energetic particles, magnetic fields, and solar material — toward Earth. Space scientists took notice, expecting it could cause disruptions to Earth’s magnetic field, known as a geomagnetic storm. But the CME wasn’t especially fast or massive, and it was preceded by a relatively weak solar flare, suggesting the storm would be minor. But it became severe.
Using NASA heliophysics missions, new studies of this storm and others are helping scientists learn why some CMEs have more intense effects — and better predict the impacts of future solar eruptions on our lives.
During the night of April 23 to 24, 2023, a geomagnetic storm produced auroras that were witnessed as far south as Arizona, Arkansas, and Texas in the U.S. This photo shows green aurora shimmering over Larimore, North Dakota, in the early morning of April 24. Copyright Elan Azriel, used with permission Why Was This Storm So Intense?
A paper published in the Astrophysical Journal on March 31 suggests the CME’s orientation relative to Earth likely caused the April 2023 storm to become surprisingly strong.
The researchers gathered observations from five heliophysics spacecraft across the inner solar system to study the CME in detail as it emerged from the Sun and traveled to Earth.
They noticed a large coronal hole near the CME’s birthplace. Coronal holes are areas where the solar wind — a stream of particles flowing from the Sun — floods outward at higher than normal speeds.
“The fast solar wind coming from this coronal hole acted like an air current, nudging the CME away from its original straight-line path and pushing it closer to Earth’s orbital plane,” said the paper’s lead author, Evangelos Paouris of the Johns Hopkins Applied Physics Laboratory in Laurel, Maryland. “In addition to this deflection, the CME also rotated slightly.”
Paouris says this turned the CME’s magnetic fields opposite to Earth’s magnetic field and held them there — allowing more of the Sun’s energy to pour into Earth’s environment and intensifying the storm.
The strength of the April 2023 geomagnetic storm was a surprise in part because the coronal mass ejection (CME) that produced it followed a relatively weak solar flare, seen as the bright area to the lower right of center in this extreme ultraviolet image of the Sun from NASA’s Solar Dynamics Observatory. The CMEs that produce severe geomagnetic storms are typically preceded by stronger flares. However, a team of scientists think fast solar wind from a coronal hole (the dark area below the flare in this image) helped rotate the CME and made it more potent when it struck Earth. NASA/SDO Cool Thermosphere
Meanwhile, NASA’s GOLD (Global-scale Observations of Limb and Disk) mission revealed another unexpected consequence of the April 2023 storm at Earth.
Before, during, and after the storm, GOLD studied the temperature in the middle thermosphere, a part of Earth’s upper atmosphere about 85 to 120 miles overhead. During the storm, temperatures increased throughout GOLD’s wide field of view over the Americas. But surprisingly, after the storm, temperatures dropped about 90 to 198 degrees Fahrenheit lower than they were before the storm (from about 980 to 1,070 degrees Fahrenheit before the storm to 870 to 980 degrees Fahrenheit afterward).
“Our measurement is the first to show widespread cooling in the middle thermosphere after a strong storm,” said Xuguang Cai of the University of Colorado, Boulder, lead author of a paper about GOLD’s observations published in the journal JGR Space Physics on April 15, 2025.
The thermosphere’s temperature is important, because it affects how much drag Earth-orbiting satellites and space debris experience.
“When the thermosphere cools, it contracts and becomes less dense at satellite altitudes, reducing drag,” Cai said. “This can cause satellites and space debris to stay in orbit longer than expected, increasing the risk of collisions. Understanding how geomagnetic storms and solar activity affect Earth’s upper atmosphere helps protect technologies we all rely on — like GPS, satellites, and radio communications.”
Predicting When Storms Strike
To predict when a CME will trigger a geomagnetic storm, or be “geoeffective,” some scientists are combining observations with machine learning. A paper published last November in the journal Solar Physics describes one such approach called GeoCME.
Machine learning is a type of artificial intelligence in which a computer algorithm learns from data to identify patterns, then uses those patterns to make decisions or predictions.
Scientists trained GeoCME by giving it images from the NASA/ESA (European Space Agency) SOHO (Solar and Heliospheric Observatory) spacecraft of different CMEs that reached Earth along with SOHO images of the Sun before, during, and after each CME. They then told the model whether each CME produced a geomagnetic storm.
Then, when it was given images from three different science instruments on SOHO, the model’s predictions were highly accurate. Out of 21 geoeffective CMEs, the model correctly predicted all 21 of them; of 7 non-geoeffective ones, it correctly predicted 5 of them.
“The algorithm shows promise,” said heliophysicist Jack Ireland of NASA’s Goddard Space Flight Center in Greenbelt, Maryland, who was not involved in the study. “Understanding if a CME will be geoeffective or not can help us protect infrastructure in space and technological systems on Earth. This paper shows machine learning approaches to predicting geoeffective CMEs are feasible.”
The white cloud expanding outward in this image sequence is a coronal mass ejection (CME) that erupted from the Sun on April 21, 2023. Two days later, the CME struck Earth and produced a surprisingly strong geomagnetic storm. The images in this sequence are from a coronagraph on the NASA/ESA (European Space Agency) SOHO (Solar and Heliospheric Observatory) spacecraft. The coronagraph uses a disk to cover the Sun and reveal fainter details around it. The Sun’s location and size are indicated by a small white circle. The planet Jupiter appears as a bright dot on the far right. NASA/ESA/SOHO Earlier Warnings
During a severe geomagnetic storm in May 2024 — the strongest to rattle Earth in over 20 years — NASA’s STEREO (Solar Terrestrial Relations Observatory) measured the magnetic field structure of CMEs as they passed by.
When a CME headed for Earth hits a spacecraft first, that spacecraft can often measure the CME and its magnetic field directly, helping scientists determine how strong the geomagnetic storm will be at Earth. Typically, the first spacecraft to get hit are one million miles from Earth toward the Sun at a place called Lagrange Point 1 (L1), giving us only 10 to 60 minutes advanced warning.
By chance, during the May 2024 storm, when several CMEs erupted from the Sun and merged on their way to Earth, NASA’s STEREO-A spacecraft happened to be between us and the Sun, about 4 million miles closer to the Sun than L1.
A paper published March 17, 2025, in the journal Space Weather reports that if STEREO-A had served as a CME sentinel, it could have provided an accurate prediction of the resulting storm’s strength 2 hours and 34 minutes earlier than a spacecraft could at L1.
According to the paper’s lead author, Eva Weiler of the Austrian Space Weather Office in Graz, “No other Earth-directed superstorm has ever been observed by a spacecraft positioned closer to the Sun than L1.”
Earth’s Lagrange points are places in space where the gravitational pull between the Sun and Earth balance, making them relatively stable locations to put spacecraft. NASA By Vanessa Thomas
NASA’s Goddard Space Flight Center, Greenbelt, Md.
View the full article
-
By NASA
NASA For some people, a passion for space is something that might develop over time, but for Patrick Junen, the desire was there from the beginning. With a father and grandfather who both worked for NASA, space exploration is not just a dream; it remains a family legacy.
Now, as the stage assembly and structures subsystem manager at NASA’s Marshall Space Flight Center in Huntsville, Alabama, for the BOLE (Booster Obsolescence Life Extension) Program — an advanced solid rocket booster for NASA’s SLS (Space Launch System) heavy lift rocket — Junen is continuing that legacy.
“My grandfather worked on the Apollo & Space Shuttle Programs. Then my dad went on to work for the Space Shuttle and SLS Programs,” Junen says. “I guess you could say engineering is in my blood.”
In his role, he’s responsible for managing the Design, Development, Test, & Evaluation team for all unpressurized structural elements, such as the forward skirt, aft skirt, and the integration hardware that connects the boosters to the core stage. He also collaborates closely with NASA’s Exploration Ground Systems at Kennedy Space Center in Florida to coordinate any necessary modifications to ground facilities or the mobile launcher to support the new boosters.
Junen enjoys the technical challenges of his role and said he feels fortunate to be in a position of leadership — but it takes a team of talented individuals to build the next generation of boosters. As a former offensive lineman for the University of Mississippi, he knows firsthand the power of teamwork and the importance of effective communication in guiding a coordinated effort.
“I’ve always been drawn to team activities, and exploration is the ultimate team endeavor,” Junen says. “On the football field, it takes a strong team to be successful — and it’s really no different from what we’re doing as a team at NASA with our Northrop Grumman counterparts for the SLS rocket and Artemis missions.”
As a kid, Junen often accompanied his dad to Space Shuttle launches and was inspired by some of the talented engineers that developed Shuttle. Years later, he’s still seeing some of those same faces — but now they’re teammates, working together toward a greater mission.
“Growing up around Marshall Space Flight Center in Huntsville, Alabama, there was always this strong sense of family and dedication to the Misson. And that has always resonated with me,” Junen recalls.
This philosophy of connecting family to the mission is a tradition Junen now continues with his own children. One of his fondest NASA memories is watching the successful launch of Artemis I on Nov. 16, 2022. Although he couldn’t attend in person, Junen and his family made the most of the moment — watching the launch live beneath the Saturn V rocket at Huntsville’s U.S. Space & Rocket Center. With his dad beside him and his daughter on his shoulders, three generations stood beneath the rocket Junen’s grandfather helped build, as a new era of space exploration began.
In June, Junen witnessed the BOLE Demonstration Motor-1 perform a full-scale static test to demonstrate the ballistic performance for the evolved booster motor. This test isn’t just a technical milestone for Junen — it’s a continuation of a lifelong journey rooted in family and teamwork.
As NASA explores the Moon and prepares for the journey to Mars through Artemis, Junen is helping shape the next chapter of human spaceflight. And just like the generations before him, he’s not only building rockets — he’s building a legacy.
News Media Contact
Jonathan Deal
Marshall Space Flight Center, Huntsville, Ala.
256-544-0034
jonathan.e.deal@nasa.gov
View the full article
-
By NASA
An artist’s concept of NASA’s Orion spacecraft orbiting the Moon while using laser communications technology through the Orion Artemis II Optical Communications System.Credit: NASA/Dave Ryan As NASA prepares for its Artemis II mission, researchers at the agency’s Glenn Research Center in Cleveland are collaborating with The Australian National University (ANU) to prove inventive, cost-saving laser communications technologies in the lunar environment.
Communicating in space usually relies on radio waves, but NASA is exploring laser, or optical, communications, which can send data 10 to 100 times faster to the ground. Instead of radio signals, these systems use infrared light to transmit high-definition video, picture, voice, and science data across vast distances in less time. NASA has proven laser communications during previous technology demonstrations, but Artemis II will be the first crewed mission to attempt using lasers to transmit data from deep space.
To support this effort, researchers working on the agency’s Real Time Optical Receiver (RealTOR) project have developed a cost-effective laser transceiver using commercial-off-the-shelf parts. Earlier this year, NASA Glenn engineers built and tested a replica of the system at the center’s Aerospace Communications Facility, and they are now working with ANU to build a system with the same hardware models to prepare for the university’s Artemis II laser communications demo.
“Australia’s upcoming lunar experiment could showcase the capability, affordability, and reproducibility of the deep space receiver engineered by Glenn,” said Jennifer Downey, co-principal investigator for the RealTOR project at NASA Glenn. “It’s an important step in proving the feasibility of using commercial parts to develop accessible technologies for sustainable exploration beyond Earth.”
During Artemis II, which is scheduled for early 2026, NASA will fly an optical communications system aboard the Orion spacecraft, which will test using lasers to send data across the cosmos. During the mission, NASA will attempt to transmit recorded 4K ultra-high-definition video, flight procedures, pictures, science data, and voice communications from the Moon to Earth.
An artist’s concept of the optical communications ground station at Mount Stromlo Observatory in Canberra, Australia, using laser communications technology.Credit: The Australian National University Nearly 10,000 miles from Cleveland, ANU researchers working at the Mount Stromlo Observatory ground station hope to receive data during Orion’s journey around the Moon using the Glenn-developed transceiver model. This ground station will serve as a test location for the new transceiver design and will not be one of the mission’s primary ground stations. If the test is successful, it will prove that commercial parts can be used to build affordable, scalable space communication systems for future missions to the Moon, Mars, and beyond.
“Engaging with The Australian National University to expand commercial laser communications offerings across the world will further demonstrate how this advanced satellite communications capability is ready to support the agency’s networks and missions as we set our sights on deep space exploration,” said Marie Piasecki, technology portfolio manager for NASA’s Space Communications and Navigation (SCaN) Program.
As NASA continues to investigate the feasibility of using commercial parts to engineer ground stations, Glenn researchers will continue to provide critical support in preparation for Australia’s demonstration.
Strong global partnerships advance technology breakthroughs and are instrumental as NASA expands humanity’s reach from the Moon to Mars, while fueling innovations that improve life on Earth. Through Artemis, NASA will send astronauts to explore the Moon for scientific discovery, economic benefits, and build the foundation for the first crewed missions to Mars.
The Real Time Optical Receiver (RealTOR) team poses for a group photo in the Aerospace Communications Facility at NASA’s Glenn Research Center in Cleveland on Friday, Dec. 13, 2024. From left to right: Peter Simon, Sarah Tedder, John Clapham, Elisa Jager, Yousef Chahine, Michael Marsden, Brian Vyhnalek, and Nathan Wilson.Credit: NASA The RealTOR project is one aspect of the optical communications portfolio within NASA’s SCaN Program, which includes demonstrations and in-space experiment platforms to test the viability of infrared light for sending data to and from space. These include the LCOT (Low-Cost Optical Terminal) project, the Laser Communications Relay Demonstration, and more. NASA Glenn manages the project under the direction of agency’s SCaN Program at NASA Headquarters in Washington.
The Australian National University’s demonstration is supported by the Australian Space Agency Moon to Mars Demonstrator Mission Grant program, which has facilitated operational capability for the Australian Deep Space Optical Ground Station Network.
To learn how space communications and navigation capabilities support every agency mission, visit:
https://www.nasa.gov/communicating-with-missions
Explore More
3 min read NASA Engineers Simulate Lunar Lighting for Artemis III Moon Landing
Article 1 week ago 2 min read NASA Seeks Commercial Feedback on Space Communication Solutions
Article 1 week ago 4 min read NASA, DoD Practice Abort Scenarios Ahead of Artemis II Moon Mission
Article 2 weeks ago View the full article
-
By NASA
6 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
With Voyager 2 in the background, John Casani holds a small U.S. flag that was sewn into the spacecraft’s thermal blankets before its 1977 launch. Then Voyager’s project manager, Casani was first to envision the mission’s Golden Record, which lies before him with its cover at right. NASA/JPL-Caltech During his work on several historic missions, Casani rose through a series of technical and management positions, making an indelible mark on the nation’s space program.
John R. Casani, a visionary engineer who served a central role in many of NASA’s historic deep space missions, died on Thursday, June 19, 2025, at the age of 92. He was preceded in death by his wife of 39 years, Lynn Casani, in 2008 and is survived by five sons and their families.
Casani started at the Jet Propulsion Laboratory in Southern California in 1956 and went on to work as an electronics engineer on some of the nation’s earliest spacecraft after NASA’s formation in 1958. Along with leading the design teams for both the Ranger and Mariner series of spacecraft, he held senior project positions on many of the Mariner missions to Mars and Venus, and was project manager for three trailblazing space missions: Voyager, Galileo, and Cassini.
His work helped advance NASA spacecraft in areas including mechanical technology, system design and integration, software, and deep space communications. No less demanding were the management challenges of these multifaceted missions, which led to innovations still in use today.
JPL’s John Casani receives the National Air & Space Museum’s Lifetime Achievement Award.Carolyn Russo/NASM, National Air and Space Museum, Smithsonian Institution “John had a major influence on the development of spacecraft that visited almost every planet in our solar system, as well as the people who helped build them,” said JPL director Dave Gallagher. “He played an essential role in America’s first attempts to reach space and then the Moon, and he was just as crucial to the Voyager spacecraft that marked humanity’s first foray into interplanetary — and later, interstellar — space. That Voyager is still exploring after nearly 50 years is a testament to John’s remarkable engineering talent and his leadership that enabled others to push the boundaries of possibility.”
Born in Philadelphia in 1932, Casani studied electrical engineering at the University of Pennsylvania. After a short stint at an Air Force research lab, he moved to California in 1956 and was hired to work at JPL, a division of Caltech, on the guidance system for the U.S. Army Ballistic Missile Agency’s Jupiter-C and Sergeant missile programs.
In 1957, the Soviet Union launched Sputnik 1, the first human-made Earth satellite, alarming America and changing the trajectory of both JPL and Casani’s career. With the 1958 launch of Explorer 1, America’s first satellite, the lab transitioned to concentrating on robotic space explorers, and Casani segued from missiles to spacecraft.
One of his jobs as payload engineer on Pioneer 3 and 4, NASA’s first missions to the Moon, was to carry each of the 20-inch-long (51-cm-long) probes in a suitcase from JPL to the launch site at Cape Canaveral, Florida, where he installed them in the rocket’s nose cone.
At the dawn of the 1960s, Casani served as spacecraft systems engineer for the agency’s first two Ranger missions to the Moon, then joined the Mariner project in 1965, earning a reputation for being meticulous. Four years later, he was Mariner project manager.
Asked to share some of his wisdom in a 2009 NASA presentation, Casani said, “The thing that makes any of this work … is toughness. Toughness because this is a tough business, and it’s a very unforgiving business. You can do 1,000 things right, but if you don’t do everything right, it’ll come back and bite you.”
Casani’s next role: project manager for NASA’s high-profile flagship mission to the outer planets and beyond — Voyager. He not only led the mission from clean room to space, he was first to envision attaching a message representing humanity to any alien civilization that might encounter humanity’s first interstellar emissaries.
“I approached Carl Sagan,” he said in a 2007 radio interview, “and asked him if he could come up with something that would be appropriate that we could put on our spacecraft in a way of sending a message to whoever might receive it.” Sagan took up the challenge, and what resulted was the Golden Record, a 12-inch gold-plated copper disk containing sounds and images selected to portray the diversity of life and culture on Earth.
Once Voyager 1 and 2 and their Golden Records launched in 1977, JPL wasted no time in pointing their “engineer’s engineer” toward Galileo, which would become the first mission to orbit a gas giant planet. As the mission’s initial project manager, Casani led the effort from inception to assembly. Along the way, he had to navigate several congressional attempts to end the project, necessitating multiple visits to Washington. The 1986 loss of Space Shuttle Challenger, from which Galileo was to launch atop a Centaur upper-stage booster, led to mission redesign efforts before its 1989 launch.
After 11 years leading Galileo, Casani became deputy assistant laboratory director for flight projects in 1988, received a promotion just over a year later and then, from 1990 to 1991, served as project manager of Cassini, NASA’s first flagship mission to orbit Saturn.
Casani became JPL’s first chief engineer in 1994, retiring in 1999 and serving on several nationally prominent committees, including leading the investigation boards of both the Mars Climate Orbiter and the Mars Polar Lander failures, and also leading the James Webb Space Telescope Independent Comprehensive Review Panel.
In early 2003, Casani returned to JPL to serve as project manager for NASA’s Project Prometheus, which would have been the nation’s first nuclear-powered, electric-propulsion spacecraft. In 2005, he became manager of the Institutional Special Projects Office at JPL, a position he held until retiring again in 2012.
“Throughout his career, John reflected the true spirit of JPL: bold, innovative, visionary, and welcoming,” said Charles Elachi, JPL’s director from 2001 to 2016. “He was an undisputed leader with an upbeat, fun attitude and left an indelible mark on the laboratory and NASA. I am proud to have called him a friend.”
Casani received many awards over his lifetime, including NASA’s Exceptional Achievement Medal, the Management Improvement Award from the President of the United States for the Mariner Venus Mercury mission, and the Air and Space Museum Trophy for Lifetime Achievement.
News Media Contacts
Matthew Segal / Veronica McGregor
Jet Propulsion Laboratory, Pasadena, Calif.
818-354-8307 / 818-354-9452
matthew.j.segal@jpl.nasa.gov / veronica.c.mcgregor@jpl.nasa.gov
Share
Details
Last Updated Jun 25, 2025 Related Terms
Jet Propulsion Laboratory Explore More
6 min read NASA’s Perseverance Rover Scours Mars for Science
Article 2 hours ago 5 min read NASA’s Curiosity Mars Rover Starts Unpacking Boxwork Formations
Article 2 days ago 4 min read NASA Mars Orbiter Captures Volcano Peeking Above Morning Cloud Tops
Article 3 weeks ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.