Jump to content

Clare Luckey: Shaping the Future of Mars Missions and Inspiring the Artemis Generation 


Recommended Posts

  • Publishers

As a member of the Mars Architecture Team, Clare Luckey is one of the people at the forefront of designing the first crewed mission to the Red Planet. Her current work involves helping to develop the vision for the initial segment of Mars exploration missions. She also has been named one of Forbes’ 30 under 30 Class of 2024 in the Science category. Her commitment extends beyond the cosmos as she is deeply involved in community outreach, inspiring students to aim for the stars in space careers and encouraging diversity in STEM.  

Starting her journey as an intern at NASA’s Johnson Space Center Operations in fall 2018, Luckey’s career trajectory has been nothing short of meteoric. She began her career as a contractor at Barrios Technology, focusing on cargo integration for the International Space Station Program, then transitioned to a civil servant position in Center Operations by late 2020. Currently serving in the Exploration Mission Planning Office, Luckey’s role is critical not just in Mars exploration but also in the Artemis missions, where she contributes to Lunar Mission Planning in the Mission Analysis and Integrated Assessments team. 

A woman wearing a yellow blouse and black blazer smiles in front of a blue background with two flags behind her, a U.S. flag on the left and a NASA flag on the right.
Official portrait of Clare Luckey.
Credit: NASA/Josh Valcarcel

Luckey’s innovative thinking is especially crucial as she navigates the complexities of planning travel to Mars. Her ability to compare and adapt strategies from near-term missions like Artemis to the long-term objectives of Mars colonization highlights her unique insight and adaptability. “Mars missions are more open to change because they are far in the future,” said Luckey. “We are still in the process of figuring out not only how to make decisions, but what decisions to make.” 

Her influence extends far beyond engineering. Luckey’s engagement with global space leaders at the Space Symposium and her contributions as a panelist at the American Institute of Aeronautics and Astronautics Science and Technology Forum exemplify her as a thought leader in aerospace. She also participated in the Space Generation Advisory Council, a board that advises the United Nations on next-generation space exploration concepts. “All of these opportunities have given me different insights into the larger space industry and space economy,” she said. 

A woman in a lobby smiles in front of a brown poster containing text and images.
Clare Luckey, member of the Mars Architecture Team, shares her passion with NASA’s Johnson Space Center employees at the JSC Town Hall on Aug. 23, 2023.
Credit: NASA/Riley McClenaghan 

Reflecting on her journey, Luckey attributes her passion for space exploration to a middle school project, “Future Cities,” where she and her friends designed a futuristic Mars city. The project ignited her imagination and inspired her to think critically and creatively about the future. “It’s important to build the foundations of mathematics and science at a young age,” she said. “I am really passionate about getting other people who look like me involved in the space industry.” 

Luckey’s involvement with the National Society of Black Engineers and her efforts to mentor and help students with school projects gives her great joy. “NASA can invest in the next generation by building a sustainable pipeline alongside sustainable space architecture,” she said. “You have to invest in communities and education so that kids grow up participating in a culmination of activities that make them want to be a part of NASA.” She believes that persistence, passion, and creativity are the top qualities for someone to excel in the space exploration industry.  

As a vocal advocate for diversity in the space industry, Luckey emphasizes the importance of community and mentorship within NASA and beyond. “I try to reach out to people and build that community because it is important,” she said. “That’s one of the things that keeps people coming to work – no matter where you work. It’s not the work, it’s the people that keep you coming back. I work with a lot of great people that have built that NASA community.” 

A close up image of a person seated at a table in a crowded room with a serious look on their face.
Clare Luckey at the NASA Human Research Program Investigators’ Workshop 2023, “To the Moon: The Next Golden Age of Human Spaceflight,” at the Galveston Island Convention Center on Feb. 8, 2023.
Credit: NASA/Josh Valcarcel 

Luckey’s advice to aspiring space explorers is, “Just try. Even when you don’t think you’re capable or don’t think you know enough, you will learn as you go.” She also encourages students to search out opportunities and get involved at a young age. “There’s no wrong answer. Just do what you’re interested in, put effort into it, and you’ll end up where you want to go,” she said. 

Her favorite part about working at NASA is the outlandishness of it all, she said. “People at NASA are really trying to build the future. The work we do here is amazing and not to be overlooked.” She is looking forward to the Artemis missions because this time is a completely new paradigm. “With Artemis, we’re going to the Moon to stay and to build sustainable architecture,” said Luckey. “We’re going to push forward. I am really excited to see how it turns out, and the international collaboration will be amazing for us.” 

Her enthusiasm for the Artemis campaign and the future of international space collaboration shines through her work, envisioning a new era of lunar exploration and beyond. “I am grateful to be here,” she said. “The most important thing to me is to be humble and personable. I want to be someone that is approachable, helpful, and easy to learn from so that I can be a mentor to the next generation of students, in the same way that I had mentors.” 

A person smiling with their arms folded in front of a grey background.
Clare Luckey, an engineer at NASA’s Johnson Space Center in Houston.
Credit: NASA/Bill Stafford 

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      NASA’s Pegasus barge delivers the SLS (Space Launch System) rocket’s core stage for the 2022 Artemis I mission to the turn basin at Kennedy Space Center in Florida in April 2021. Credits: NASA/Michael Downs Media are invited in late July to NASA’s Kennedy Space Center in Florida to see progress on the agency’s SLS (Space Launch System) Moon rocket as preparations continue for the Artemis II test flight around the Moon.
      Participants joining the multi-day events will see the arrival and unloading of the 212-foot-tall SLS core stage at the center’s turn basin before it is transported to the nearby Vehicle Assembly Building. The stage will arrive on NASA’s Pegasus barge from the agency’s Michoud Assembly Facility in New Orleans, where it was manufactured and assembled.
      Media also will see the twin pair of solid rocket boosters inside the Rotation, Processing, and Surge Facility at the spaceport, where NASA’s Exploration Ground Systems Program is processing the motor segments in preparation for rocket assembly. NASA and industry subject matter experts will be available to answer questions. At launch, the SLS rocket’s two solid rocket boosters and four RS-25 engines, located at the base of its core stage, will produce 8.8 million pounds of thrust to send the first crewed mission of the Artemis campaign around the Moon.
      Media interested in participating must apply for credentials at:
      https://media.ksc.nasa.gov
      To receive credentials, international media must apply by Friday, June 28, and U.S. citizens must apply by Thursday, July 5.
      Credentialed media will receive a confirmation email upon approval, along with additional information about the specific date for the activities when they are finalized. NASA’s media accreditation policy is available online. For questions about accreditation, please email ksc-media-accreditat@mail.nasa.gov. For other questions, please contact Kennedy’s newsroom at: 321-867-2468.
      Para obtener información sobre cobertura en español en el Centro Espacial Kennedy o si desea solicitar entrevistas en español, comuníquese con Antonia Jaramillo o Messod Bendayan a: antonia.jaramillobotero@nasa.gov o messod.c.bendayan@nasa.gov.
      The approximately 10-day Artemis II flight will test NASA’s SLS rocket, Orion spacecraft, and ground systems for the first time with astronauts and will pave the way for lunar surface missions, including landing the first woman, first person of color, and first international partner astronaut on the Moon.
      Learn more about Artemis at:
      www.nasa.gov/artemis/
      -end-
      Rachel Kraft 
      Headquarters, Washington 
      281-358-1100  
      rachel.h.kraft@nasa.gov  
      Tiffany Fairley/Antonia Jaramillo
      Kennedy Space Center, Florida
      321-867-2468
      tiffany.l.fairley@nasa.gov/antonia.jaramillobotero@nasa.gov
      Share
      Details
      Last Updated Jun 14, 2024 LocationNASA Headquarters Related Terms
      Artemis 2 Artemis Humans in Space Kennedy Space Center Space Launch System (SLS) View the full article
    • By NASA
      Acting Assistant Secretary of State for the Bureau of Oceans and International Environmental and Scientific Affairs Jennifer Littlejohn, left, NASA Administrator Bill Nelson, and Ambassador of the Republic of Armenia to the United States Lilit Makunts, right, look on as Mkhitar Hayrapetyan, Minister of High-Tech Industry of the Republic of Armenia, signs the Artemis Accords, Wednesday, June 12, 2024, at the Mary W. Jackson NASA Headquarters building in Washington. The Republic of Armenia is the 43rd country to sign the Artemis Accords, which establish a practical set of principles to guide space exploration cooperation among nations participating in NASA’s Artemis program. Photo Credit NASA/Joel Kowsky NASA Administrator Bill Nelson welcomed Armenia as the newest nation to sign the Artemis Accords Wednesday during a ceremony with the U.S. State Department at NASA Headquarters in Washington. Armenia joins 42 other countries in a commitment to advancing principles for the safe, transparent, and responsible exploration of the Moon, Mars and beyond.
      “NASA is proud to welcome Armenia to the Artemis Accords as we expand the peaceful exploration of space,” said Nelson. “Today’s signing builds on an important foundation. Armenia long has looked to the heavens and helped humanity understand them. As the 10th nation this year to sign the Artemis Accords, we are proving that exploration unites nations like few other things can. We will continue to expand humanity’s reach in the cosmos – together.”   
      Mkhitar Hayrapetyan, Minister of High-Tech Industry, signed the Artemis Accords on behalf of Armenia. Lilit Makunts, ambassador of Armenia to the U.S. and Jennifer R. Littlejohn, acting assistant secretary, Bureau of Oceans and International Environmental and Scientific Affairs, Department of State, also participated in the event.
      “By signing these accords, Armenia joins a community of nations dedicated to advancing the frontiers of human knowledge and capability in space,” said Hayrapetyan. “Our involvement will not only enhance our technological capabilities, but also inspire a new generation of Armenians to dream big, to innovate and to explore the world and universe.”
      The United States and seven other nations were the first to sign the Artemis Accords in 2020, which identified an early set of principles promoting the beneficial use of space for humanity. The accords are grounded in the Outer Space Treaty and other agreements including the Registration Convention, the Rescue and Return Agreement, as well as best practices and norms of responsible behavior that NASA and its partners have supported, including the public release of scientific data. More countries are expected to sign the Artemis Accords in the months and years to come.
      The commitments of the Artemis Accords, and efforts by the signatories to advance implementation of these principles, support NASA’s Artemis campaign with its partners, as well as for the success of the safe and sustainable exploration activities of the other accords signatories.
      For more information about the Artemis Accords, visit:
      https://www.nasa.gov/artemis-accords/
      -end-
      Faith McKie / Jennifer Dooren
      Headquarters, Washington
      202-358-1600
      faith.d.mckie@nasa.gov / jennifer.m.dooren@nasa.gov


      Share
      Details
      Last Updated Jun 12, 2024 EditorJennifer M. DoorenLocationNASA Headquarters Related Terms
      Office of International and Interagency Relations (OIIR) View the full article
    • By European Space Agency
      Production of Galileo Second Generation satellites advances at full speed after two independent Satellite Critical Design Review boards have confirmed that the satellite designs of the respective industries meet all mission and performance requirements. This achievement is another crucial milestone hit on time in the ambitious schedule to develop the first 12 satellites of the Galileo Second Generation fleet.
      View the full article
    • By NASA
      6 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      The specks in this scene were caused by charged particles from a solar storm hitting a camera aboard NASA’s Curiosity Mars rover. Curiosity uses its navigation cameras to try and capture images of dust devils and wind gusts, like the one seen here.NASA/JPL-Caltech NASA’s Curiosity Mars rover captured black-and-white streaks and specks using one of its navigation cameras just as particles from a solar storm arrived on the Martian surface. These visual artifacts are caused by energetic particles hitting the camera’s image detector.NASA/JPL-Caltech In addition to producing auroras, a recent extreme storm provided more detail on how much radiation future astronauts could encounter on the Red Planet.
      Mars scientists have been anticipating epic solar storms ever since the Sun entered a period of peak activity earlier this year called solar maximum. Over the past month, NASA’s Mars rovers and orbiters have provided researchers with front-row seats to a series of solar flares and coronal mass ejections that have reached Mars — in some cases, even causing Martian auroras.
      This science bonanza has offered an unprecedented opportunity to study how such events unfold in deep space, as well as how much radiation exposure the first astronauts on Mars could encounter.
      The biggest event occurred on May 20 with a solar flare later estimated to be an X12 — X-class solar flares are the strongest of several types — based on data from the Solar Orbiter spacecraft, a joint mission between ESA (European Space Agency) and NASA. The flare sent out X-rays and gamma rays toward the Red Planet, while a subsequent coronal mass ejection launched charged particles. Moving at the speed of light, the X-rays and gamma rays from the flare arrived first, while the charged particles trailed slightly behind, reaching Mars in just tens of minutes.
      The unfolding space weather was closely tracked by analysts at the Moon to Mars Space Weather Analysis Office at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, which flagged the possibility of incoming charged particles following the coronal mass ejection.
      If astronauts had been standing next to NASA’s Curiosity Mars rover at the time, they would have received a radiation dose of 8,100 micrograys — equivalent to 30 chest X-rays. While not deadly, it was the biggest surge measured by Curiosity’s Radiation Assessment Detector, or RAD, since the rover landed 12 years ago.
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      The purple color in this video shows auroras on Mars’ nightside as detected by the ultraviolet instrument aboard NASA’s MAVEN orbiter between May 14 and 20, 2024. The brighter the purple, the more auroras that were present.NASA/University of Colorado/LASP RAD’s data will help scientists plan for the highest level of radiation exposure that might be encountered by astronauts, who could use on the Martian landscape for protection.
      “Cliffsides or lava tubes would provide additional shielding for an astronaut from such an event. In Mars orbit or deep space, the dose rate would be significantly more,” said RAD’s principal investigator, Don Hassler of Southwest Research Institute’s Solar System Science and Exploration Division in Boulder, Colorado. “I wouldn’t be surprised if this active region on the Sun continues to erupt, meaning even more solar storms at both Earth and Mars over the coming weeks.”
      During the May 20 event, so much energy from the storm struck the surface that black-and-white images from Curiosity’s navigation cameras danced with “snow” — white streaks and specks caused by charged particles hitting the cameras.
      Similarly, the star camera NASA’s 2001 Mars Odyssey orbiter uses for orientation was inundated with energy from solar particles, momentarily going out. (Odyssey has other ways to orient itself, and recovered the camera within an hour.) Even with the brief lapse in its star camera, the orbiter collected vital data on X-rays, gamma rays, and charged particles using its High-Energy Neutron Detector.
      This wasn’t Odyssey’s first brush with a solar flare: In 2003, solar particles from a solar flare that was ultimately estimated to be an X45 fried Odyssey’s radiation detector, which was designed to measure such events.
      Learn how NASA’s MAVEN and the agency’s Curiosity rover will study solar flares and radiation at Mars during solar maximum – a period when the Sun is at peak activity. Credit: NASA/JPL-Caltech/GSFC/SDO/MSSS/University of Colorado Auroras Over Mars
      High above Curiosity, NASA’s MAVEN (Mars Atmosphere and Volatile EvolutioN) orbiter captured another effect of the recent solar activity: glowing auroras over the planet. The way these auroras occur is different than those seen on Earth.
      Our home planet is shielded from charged particles by a robust magnetic field, which normally limits auroras to regions near the poles. (Solar maximum is the reason behind the recent auroras seen as far south as Alabama.) Mars lost its internally generated magnetic field in the ancient past, so there’s no protection from the barrage of energetic particles. When charged particles hit the Martian atmosphere, it results in auroras that engulf the entire planet.
      During solar events, the Sun releases a wide range of energetic particles. Only the most energetic can reach the surface to be measured by RAD. Slightly less energetic particles, those that cause auroras, are sensed by MAVEN’s Solar Energetic Particle instrument.
      Scientists can use that instrument’s data to rebuild a timeline of each minute as the solar particles screamed past, meticulously teasing apart how the event evolved.
      “This was the largest solar energetic particle event that MAVEN has ever seen,” said MAVEN Space Weather Lead, Christina Lee of the University of California, Berkeley’s Space Sciences Laboratory. “There have been several solar events in past weeks, so we were seeing wave after wave of particles hitting Mars.”
      New Spacecraft to Mars
      The data coming in from NASA’s spacecraft won’t only help future planetary missions to the Red Planet. It’s contributing to a wealth of information being gathered by the agency’s other heliophysics missions, including Voyager, Parker Solar Probe, and the forthcoming ESCAPADE (Escape and Plasma Acceleration and Dynamics Explorers) mission.
      Targeting a late-2024 launch, ESCAPADE’s twin small satellites will orbit Mars and observe space weather from a unique dual perspective that is more detailed than what MAVEN can currently measure alone.
      More About the Missions
      Curiosity was built by NASA’s Jet Propulsion Laboratory, which is managed by Caltech in Pasadena, California. JPL leads the mission on behalf of NASA’s Science Mission Directorate in Washington.
      MAVEN’s principal investigator is based at the Laboratory for Atmospheric and Space Physics (LASP) at the University of Colorado Boulder. LASP is also responsible for managing science operations and public outreach and communications. NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the MAVEN mission. Lockheed Martin Space built the spacecraft and is responsible for mission operations. NASA’s Jet Propulsion Laboratory in Southern California provides navigation and Deep Space Network support. The MAVEN team is preparing to celebrate the spacecraft’s 10th year at Mars in September 2024.
      For more about these missions, visit:
      http://mars.nasa.gov/msl
      http://mars.nasa.gov/maven
      News Media Contacts
      Andrew Good
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-393-2433
      andrew.c.good@jpl.nasa.gov
      Karen Fox / Charles Blue
      NASA Headquarters, Washington
      202-358-1600 / 202-802-5345
      karen.c.fox@nasa.gov / charles.e.blue@nasa.gov
      2024-080
      Share
      Details
      Last Updated Jun 10, 2024 Related Terms
      Mars Curiosity (Rover) Goddard Space Flight Center Jet Propulsion Laboratory MAVEN (Mars Atmosphere and Volatile EvolutioN) Explore More
      3 min read PACE Celebrates National Ocean Month With Colorful Views of the Planet
      Article 3 days ago 2 min read Hubble Examines a Barred Spiral’s Light
      This NASA/ESA Hubble Space Telescope image features the barred spiral galaxy NGC 3059, which lies…
      Article 3 days ago 4 min read Jonathan Lunine Appointed Chief Scientist of NASA’s Jet Propulsion Laboratory
      Article 4 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By European Space Agency
      ESA’s ExoMars and Mars Express missions have spotted water frost for the first time near Mars’s equator, a part of the planet where it was thought impossible for frost to exist.
      View the full article
  • Check out these Videos

×
×
  • Create New...