Members Can Post Anonymously On This Site
Artificial Intelligence Town Hall
-
Similar Topics
-
By NASA
The NASA Science Mission Directorate (SMD) instituted the Entrepreneurs Challenge to identify innovative ideas and technologies from small business start-ups with the potential to advance the agency’s science goals. Geolabe—a prize winner in the latest Entrepreneurs Challenge—has developed a way to use artificial intelligence to identify global methane emissions. Methane is a greenhouse gas that significantly contributes to global warming, and this promising new technology could provide data to help decision makers develop strategies to mitigate climate change.
SMD sponsored Entrepreneurs Challenge events in 2020, 2021, and 2023. Challenge winners were awarded prize money—in 2023 the total Entrepreneurs Challenge prize value was $1M. To help leverage external funding sources for the development of innovative technologies of interest to NASA, SMD involved the venture capital community in Entrepreneurs Challenge events. Numerous challenge winners have subsequently received funding from both NASA and external sources (e.g., other government agencies or the venture capital community) to further develop their technologies.
Each Entrepreneurs Challenge solicited submissions in specific focus areas such as mass spectrometry technology, quantum sensors, metamaterials-based sensor technologies, and more. The focus areas of the latest 2023 challenge included lunar surface payloads and climate science.
A recent Entrepreneurs Challenge success story involves 2023 challenge winner Geolabe—a startup founded by Dr. Claudia Hulbert and Dr. Bertrand Rouet-Leduc in 2020 in Los Alamos, New Mexico. The Geolabe team developed a method that uses artificial intelligence (AI) to automatically detect methane emissions on a global scale.
This image taken from a NASA visualization shows the complex patterns of methane emissions around the globe in 2018, based on data from satellites, inventories of human activities, and NASA global computer models. Credit: NASA’s Scientific Visualization Studio As global temperatures rise to record highs, the pressure to curb greenhouse gas emissions has intensified. Limiting methane emissions is particularly important since methane is the second largest contributor to global warming, and is estimated to account for approximately a third of global warming to date. Moreover, because methane stays in the atmosphere for a shorter amount of time compared to CO2, curbing methane emissions is widely considered to be one of the fastest ways to slow down the rate of global warming.
However, monitoring methane emissions and determining their quantities has been challenging due to the limitations of existing detection methods. Methane plumes are invisible and odorless, so they are typically detected with specialized equipment such as infrared cameras. The difficulty in finding these leaks from space is akin to finding a needle in a haystack. Leaks are distributed around the globe, and most of the methane plumes are relatively small, making them easy to miss in satellite data.
Multispectral satellite imagery has emerged as a viable methane detection tool in recent years, enabling routine measurements of methane plumes at a global scale every few days. However, with respect to methane, these measurements suffer from very poor signal to noise ratio, which has thus far allowed detection of only very large emissions (2-3 tons/hour) using manual methods.
This landscape of “mountains” and “valleys” speckled with glittering stars is actually the edge of a nearby, young, star-forming region called NGC 3324 in the Carina Nebula. Captured in infrared light by NASA’s new James Webb Space Telescope, this image reveals for the first time previously invisible areas of star birth. Credit: NASA, ESA, CSA, and STScI The Geolabe team has developed a deep learning architecture that automatically identifies methane signatures in existing open-source spectral satellite data and deconvolves the signal from the noise. This AI method enables automatic detection of methane leaks at 200kg/hour and above, which account for over 85% of the methane emissions in well-studied, large oil and gas basins. Information gained using this new technique could help inform efforts to mitigate methane emissions on Earth and automatically validate their effects. This Geolabe project was featured in Nature Communications on May 14, 2024.
SPONSORING ORGANIZATION
NASA Science Mission Directorate
Share
Details
Last Updated Aug 20, 2024 Related Terms
Earth Science Science-enabling Technology Technology Highlights Uncategorized Explore More
3 min read Perseverance Pays Off for Student Challenge Winners
As radioisotopes power the Perseverance rover to explore Mars, perseverance “powered” three winners to write…
Article
6 days ago
3 min read New TEMPO Cosmic Data Story Makes Air Quality Data Publicly Available
Article
7 days ago
3 min read Earth Educators Rendezvous with Infiniscope and Tour It
Article
1 week ago
View the full article
-
By NASA
Manil Maskey (ST11/IMPACT) represented NASA at a discussion on the National Artificial Intelligence Research Resource (NAIRR) Pilot program held on Capitol Hill. The event brought together key members of the House AI Caucus, including Representatives Anna Eshoo, Bill Foster, Haley Stevens, Jim Baird, and Sean Casten. In attendance were several congressional staffers and the director of the National Science Foundation. During the discussion, Dr. Maskey highlighted the AI initiatives of NASA’s Science Mission Directorate (SMD) and emphasized the potential benefits of the NAIRR to NASA’s activities. He also showcased the advancements in SMD’s AI foundation model developments. The event served as a platform for sharing insights and fostering collaboration between NASA, other agencies, and key legislative stakeholders on the future of AI research and its applications.
View the full article
-
By NASA
Manil Maskey (ST11/IMPACT) was an invited panelist at the United States Geospatial Intelligence Foundation (USGIF) organized GEOINT Symposium Panel titled “Geo-GPT” for Real-Time Geospatial Discovery. The panel explored the convergence of foundational artificial intelligence models beyond large language models, unveiling the potential for groundbreaking conversational “GeoGPT” capabilities that enable real-time geospatial discovery. The discussion centered on the fusion of language processing, computer vision, and spatial reasoning to enable dynamic and interactive exploration for GEOINT planning and response missions. The panel highlighted how the integration of diverse AI models can enhance the richness and accuracy of geospatial conversational AI experiences. This allows seamless interactions between humans and machines, empowering users to intuitively engage with real-time maps, interrogate them, and receive insights through natural language dialogue. Maskey shared insights on the NASA Science Mission Directorate’s (SMD’s) activities in the development and use of large language models (LLMs) and foundation models.
The USGIF is an educational foundation dedicated to promoting the geospatial intelligence tradecraft. It aims to develop a stronger GEOINT community by bringing together government, industry, academia, professional organizations, and individuals to address national security challenges through geospatial intelligence. The recording of the panel can be found here. – https://www.youtube.com/watch?v=oHzsIe2Kfmo.
View the full article
-
By NASA
Rahul Ramachandran and Maskey (ST11/IMPACT) participated in IBM Think, where their IBM collaborators showcased two innovative AI applications for weather and climate modeling. The first application focuses on climate downscaling, enhancing the resolution of climate models for more accurate local predictions. The second application aims to optimize wind farm predictions, improving renewable energy forecasts. During the event, Ramachandran and Maskey were interviewed, highlighting the ongoing fruitful collaboration with IBM Research and its potential to advance climate science and renewable energy forecasting.
View the full article
-
By Space Force
Space Systems Command’s Narrowband Satellite Communications program office was originally part of the Navy, delivering communications capabilities in the Ultra High Frequency spectrum to support deployments on land, air and sea, with voice services to data networks.
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.