Jump to content

Demonic face appears above surface of sun during biggest geomagnetic storm in almost 20 year


Recommended Posts

The sun appears to be angry; a massive coronal mass ejection unveils a striking image resembling a grimacing demonic face. Striking are the letters DV (DeVil?) standing out on the forehead of the figure. 

demonic%20face%20sun%20solar%20flare%20cme.png

Obviously, the strange phenomenon captured by NASA's solar satellite SOLO EUI HRI 174 on 2024/05/11 is an ordinary natural occurrence triggered by the eruption of solar material but a fact is that a huge CME hit Earth's magnetic field on May 10th, leading up to the biggest geomagnetic storm in almost 20 year. 

And it is not yet over as forecasts predict additional coronal mass ejections to follow closely behind, prolonging the storm well into the weekend. Anticipation mounts for widespread auroras, promising captivating displays over regions like Europa and the United States. 

The storm has now reached level G5 which is the strongest level of geomagnetic storm, on a scale from G1 to G5. The solar storm could lead to disruption of satellite communication systems, low-frequency radio navigation systems such as GPS or even widespread power grid failures. 

This unique solar phenomenon emphasizes once more the importance of constant monitoring and readiness in response to solar disruptions in order to prevent another Carrington event which was the most intense geomagnetic storm in recorded history, peaking from 1–2 September 1859.

 

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      NASA/Aubrey Gemignani NASA astronauts Frank Rubio, center, and Marcos Berrios, right, share a laugh with staff during a White House Hispanic Heritage Month event on Sept. 30, 2024. Rubio broke the record of longest single duration spaceflight for a U.S. astronaut with a mission duration of 371 days; Berrios graduated in the most recent class of astronaut candidates.
      Hispanic Heritage Month commemorates and honors the rich history of the shared culture and tradition of American citizens whose ancestors came from Spain, Mexico, the Caribbean, and Central and South America. Read some of their stories.
      Image Credit: NASA/Aubrey Gemignani
      View the full article
    • By NASA
      Earth (ESD)Earth Home Explore Climate Change Science in Action Multimedia Data For Researchers 4 min read
      Via NASA Plane, Scientists Find New Gamma-ray Emission in Storm Clouds
      Tropical thunderstorm with lightning, near the airport of Santa Marta, Colombia. Credit: Oscar van der Velde There’s more to thunderclouds than rain and lightning. Along with visible light emissions, thunderclouds can produce intense bursts of gamma rays, the most energetic form of light, that last for millionths of a second. The clouds can also glow steadily with gamma rays for seconds to minutes at a time.
      Researchers using NASA airborne platforms have now found a new kind of gamma-ray emission that’s shorter in duration than the steady glows and longer than the microsecond bursts. They’re calling it a flickering gamma-ray flash. The discovery fills in a missing link in scientists’ understanding of thundercloud radiation and provides new insights into the mechanisms that produce lightning. The insights, in turn, could lead to more accurate lightning risk estimates for people, aircraft, and spacecraft.
      Researchers from the University of Bergen in Norway led the study in collaboration with scientists from NASA’s Marshall Space Flight Center in Huntsville, Alabama, and NASA’s Goddard Space Flight Center in Greenbelt, Maryland, the U.S. Naval Research Laboratory, and multiple universities in the U.S., Mexico, Colombia, and Europe. The findings were described in a pair of papers in Nature, published Oct. 2.
      The international research team made their discovery while flying a battery of detectors aboard a NASA ER-2 research aircraft. In July 2023, the ER-2 set out on a series of 10 flights from MacDill Air Force Base in Tampa, Florida. The plane flew figure-eight flight patterns a few miles above tropical thunderclouds in the Caribbean and Central America, providing unprecedented views of cloud activity.
      The scientific payload was developed for the Airborne Lightning Observatory for Fly’s Eye Geostationary Lightning Mapper Simulator and Terrestrial Gamma-ray Flashes (ALOFT) campaign. Instrumentation in the payload included weather radars along with multiple sensors for measuring gamma rays, lightning flashes, and microwave emissions from clouds. 
      NASA’s high-flying ER-2 airplane carries instrumentation in this artist’s impression of the ALOFT mission to record gamma rays (colored purple for illustration) from thunderclouds.Credit: NASA/ALOFT team The researchers had hoped ALOFT instruments would observe fast radiation bursts known as terrestrial gamma-ray flashes (TGFs). The flashes, first discovered in 1992 by NASA’s Compton Gamma Ray Observatory spacecraft, accompany some lightning strikes and last only millionths of a second. Despite their high intensity and their association with visible lightning, few TGFs have been spotted during previous aircraft-based studies.  
      “I went to a meeting just before the ALOFT campaign,” said principal investigator Nikolai Østgaard, a space physicist with the University of Bergen. “And they asked me: ‘How many TGFs are you going to see?’ I said: ‘Either we’ll see zero, or we’ll see a lot.’ And then we happened to see 130.” 
      However, the flickering gamma-ray flashes were a complete surprise.
      “They’re almost impossible to detect from space,” said co-principal investigator Martino Marisaldi, who is also a University of Bergen space physicist. “But when you are flying at 20 kilometers [12.5 miles] high, you’re so close that you will see them.” The research team found more than 25 of these new flashes, each lasting between 50 to 200 milliseconds. 
      The abundance of fast bursts and the discovery of intermediate-duration flashes could be among the most important thundercloud discoveries in a decade or more, said University of New Hampshire physicist Joseph Dwyer, who was not involved in the research. “They’re telling us something about how thunderstorms work, which is really important because thunderstorms produce lightning that hurts and kills a lot of people.” 
      More broadly, Dwyer said he is excited about the prospects of advancing the field of meteorology. “I think everyone assumes that we figured out lightning a long time ago, but it’s an overlooked area … we don’t understand what’s going on inside those clouds right over our heads.” The discovery of flickering gamma-ray flashes may provide crucial clues scientists need to understand thundercloud dynamics, he said.
      Turning to aircraft-based instrumentation rather than satellites ensured a lot of bang for research bucks, said the study’s project scientist, Timothy Lang of NASA’s Marshall Space Flight Center in Huntsville, Alabama. 
      “If we had gotten one flash, we would have been ecstatic — and we got well over 100,” he said. This research could lead to a significant advance in our understanding of thunderstorms and radiation from thunderstorms. “It shows that if you have the right problem and you’re willing to take a little bit of risk, you can have a huge payoff.”
      By James Riordon
      NASA’s Earth Science News Team
      Share
      Details
      Last Updated Oct 02, 2024 EditorJenny MarderContactJames RiordonLocationMarshall Space Flight Center Related Terms
      Earth Gamma Rays Goddard Space Flight Center View the full article
    • By European Space Agency
      New research reveals that dust carried by the wind from southern Africa towards Madagascar triggered the largest phytoplankton bloom in two decades – and, unusually, this occurred at a time of year when such blooms are rarely seen.
      View the full article
    • By USH
      A photo recently captured by NASA's Perseverance rover on Mars has revealed a surprising object that stands out from the planet's natural landscape. 

      The object in question looks like an artificial piece of glass or eventual a mirror, (the contours of the glass/mirror are clearly visible), partially located behind a rock formation. 
      The fact that it could be a mirror is because the reflection in the mirror seems to show a part of what appears to be a metallic rectangular object what lies in front of the mirror. 

      Both the glass/mirror and the metallic object seem to be remnants of something either abandoned or wrecked long ago. They clearly do not belong to the rover's equipment or any known NASA gear.  

      This discovery joins a growing list of mysterious objects found on Mars hinting at the possibility that intelligent civilizations may have once existed on the planet potentially wiped out due to a catastrophic event which made life on the planet impossible. 
      Link to the photo uploaded by Neville Thompson on his Gigapan page. http://www.gigapan.com/gigapans/236036View the full article
    • By European Space Agency
      Video: 00:00:29 Solar wind is a never-ending stream of charged particles coming from the Sun. Rather than a constant breeze, this wind is rather gusty. As solar wind particles travel through space, they interact with the Sun's variable magnetic field, creating chaotic and fluctuating motion known as turbulence.
      This video confirms something long suspected: the turbulent motion of solar wind begins very close to the Sun, inside the solar atmosphere known as the corona. Small disturbances affecting solar wind in the corona are carried outward and expand, generating turbulent flow further out in space.
      By blocking out direct light coming from the Sun, the Metis coronagraph instrument on Solar Orbiter is able to capture the fainter visible and ultraviolet light coming from the solar corona. Its high-resolution images show the detailed structure and movement within the corona, revealing how solar wind motion already becomes turbulent at its roots.
      The red-tinted ring in the video shows Metis observations made on 12 October 2022. At the time, the spacecraft was just 43.4 million km from the Sun, less than a third of the Sun–Earth distance. The video of the Sun in the centre of the video was recorded by Solar Orbiter’s Extreme Ultraviolet Imager (EUI) on the same day. (Read more about Solar Orbiter’s instruments here.)
      “This new analysis provides the first-ever evidence for the onset of fully developed turbulence in the Sun’s corona. Solar Orbiter’s Metis coronagraph was able to detect it very close to the Sun, closer than any spacecraft could approach the Sun and make local measurements,” explains Daniel Müller, ESA’s Solar Orbiter Project Scientist.
      Turbulence affects how solar wind is heated, how it moves through the Solar System and how it interacts with the magnetic fields of planets and moons it passes through. Understanding solar wind turbulence is crucial for predicting space weather and its effects on Earth.
      ‘Metis observation of the onset of fully developed turbulence in the solar corona’ by Daniele Telloni et al. was published today in Astrophysical Journal Letters.
      [Video description: The Sun is shown in the centre, surrounded by a ring of data from Solar Orbiter’s Metis coronagraph. The data show changes in brightness of the solar corona, which directly relates to the density of charged particles. These changes are made visible by subtracting consecutive coronal brightness images taken two minutes apart. Red regions show no change, while white and black regions highlight positive and negative changes in brightness. This reveals how charged solar wind particles within the corona move in a chaotic, turbulent way. The video repeats three times.]
      View the full article
  • Check out these Videos

×
×
  • Create New...