Jump to content

An extinction threat to many species "The coming magnetic pole shift"


Recommended Posts

The concept that CO2 and climate change are political fabrications is often propagated by those who believe powerful entities are behind the so-called global warming hoax, aiming to convince the public that human activities are to blame. However, it is argued that climate change is a natural process, similar to events that have occurred throughout history. The video below by Suspicious0bservers provides a detailed analysis of the actual causes of current planetary changes and offers insights into what we might expect in the coming years. 

magnetic%20pole%20shift.png

The most recent complete magnetic pole reversal, known as the Brunhes-Matuyama reversal, occurred approximately 780,000 years ago. During this event, Earth's magnetic poles switched places. These reversals are part of Earth's natural geomagnetic processes and occur irregularly over geological timescales. 

However, there have been shorter, less complete shifts called geomagnetic excursions. One of the notable recent geomagnetic excursions is the Laschamp event, which occurred about 41,000 years ago. During this event, the magnetic field weakened significantly, and the poles nearly reversed before returning to their original configuration. 

Now, Earth is currently undergoing a cyclical magnetic pole shift, known as a geomagnetic excursion. This movement has been accelerating in recent decades, particularly with the North Magnetic Pole rapid movement from the Canadian Arctic towards Russia, which poses a significant extinction threat to many species. 

The weakening of Earth's magnetic field and the shifting of its magnetic poles are well-documented phenomena. 

In 2000, NASA and geophysicists reported a 10% decline in the magnetic field's strength. By 2010, the European Space Agency's Magnetic Mission updated this figure to a 15% loss, noting an acceleration from a 5% loss per century to 5% per decade. By 2020, another 5% decline was recorded, and the 2023 interpolated value showed further acceleration. The initial 10% reduction took 150 years, but the next 10% occurred within just 20 years. If this acceleration continues, we could lose 5% of the magnetic field every five years. 

We anticipate a 50% reduction in the magnetic field by the early 2030s, a level that could make our technological lifestyle unsustainable and lead to severe weather impacts. Around 2040, a full magnetic pole flip or geomagnetic excursion is expected, although this could occur a few years earlier or later. 

A critical concern in the coming years is the loss of ozone due to particle-driven molecular destruction, coupled with increased exposure to cosmic ray space radiation. This scenario would result in climate chaos and heightened radiation exposure. The only defense against these effects is Earth's magnetic field, which is currently weakening due to the ongoing pole shift. 

Recent studies consistently show that magnetic reversals and pole shifts are extreme environmental events that significantly impact the biosphere. The primary drivers of these impacts are increased radiation and ozone depletion. Numerous studies confirm that solar protons, electrons, and cosmic rays are penetrating the atmosphere more effectively due to the weakening magnetic field, reaching critical levels. 

This increased radiation has two main effects: ozone destruction allows more ultraviolet (UV) light into Earth's system, raising temperatures, and cosmic rays intensify extreme weather events, including heatwaves, cold snaps, storms, flooding, and droughts. 

These changes not only affect the climate but also harm living organisms. Extra UV light is dangerous for animals, plants, and microorganisms, including oceanic plankton and chlorophyll-based food chains. Cosmic rays similarly amplify particle radiation's detrimental effects, causing cancer, cellular dysfunction, and DNA mutations. 

Scientists clearly recognize that cyclical magnetic pole shifts pose significant challenges to life on Earth. Humans will face these challenges both directly and through their impact on the food chain.  

Moreover, our dependence on electricity makes us particularly vulnerable. A weakened magnetic field could allow solar activity to disrupt power grids, resulting in widespread loss of heat, water treatment, food transport, communication, and critical infrastructure. 

This growing issue highlights the planet's increasing vulnerability as it loses its protective magnetic shield.

 

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By European Space Agency
      As BepiColombo sped past Mercury during its June 2023 flyby, it encountered a variety of features in the tiny planet’s magnetic field. These measurements provide a tantalising taste of the mysteries that the mission is set to investigate when it arrives in orbit around the Solar System’s innermost planet.
      View the full article
    • By European Space Agency
      To achieve truly global connectivity, telecommunications satellites are essential. Through the Sunrise Partnership Project with Eutelsat OneWeb – part of Eutelsat Group – and support from the UK Space Agency, ESA is extending advanced 5G connectivity to areas beyond the reach of traditional ground networks.
      View the full article
    • By NASA
      5 Min Read 9 Phenomena NASA Astronauts Will Encounter at Moon’s South Pole
      An artist’s rendering of an Artemis astronaut working on the Moon’s surface. Credits:
      NASA NASA’s Artemis campaign will send the first woman and the first person of color to the Moon’s south polar region, marking humanity’s first return to the lunar surface in more than 50 years.
      Here are some out-of-this-world phenomena Artemis astronauts will experience:
      1. A Hovering Sun and Giant Shadows
      This visualization shows the motions of Earth and the Sun as viewed from the South Pole of the Moon.
      NASA’s Goddard Space Flight Center Near the Moon’s South Pole, astronauts will see dramatic shadows that are 25 to 50 times longer than the objects casting them. Why? Because the Sun strikes the surface there at a low angle, hanging just a few degrees above the horizon. As a result, astronauts won’t see the Sun rise and set. Instead, they’ll watch it hover near the horizon as it moves horizontally across the sky.

      2. Sticky, Razor-Sharp Dust …
      This dust particle came from a lunar regolith sample brought to Earth in 1969 by Apollo 11 astronauts. The particle is about 25 microns across, less than the width of an average human hair. The image was taken with a scanning electron microscope. The lunar dust, called regolith, that coats the Moon’s surface looks fine and soft like baking powder. But looks can be deceiving. Lunar regolith is formed when meteoroids hit the Moon’s surface, melting and shattering rocks into tiny, sharp pieces. The Moon doesn’t have moving water or wind to smooth out the regolith grains, so they stay sharp and scratchy, posing a risk to astronauts and their equipment.

      3. … That’s Charged with Static Electricity
      Astronaut Eugene Cernan, commander of Apollo 17, inside the lunar module on the Moon after his second moonwalk of the mission in 1972. His spacesuit and face are covered in lunar dust. Because the Moon has no atmosphere to speak of, its surface is exposed to plasma and radiation from the Sun. As a result, static electricity builds up on the surface, as it does when you shuffle your feet against a carpeted floor. When you then touch something, you transfer that charge via a small shock. On the Moon, this transfer can short-circuit electronics. Moon dust also can make its way into astronaut living quarters, as the static electricity causes it to easily stick to spacesuits. NASA has developed methods to keep the dust at bay using resistant textiles, filters, and a shield that employs an electric field to remove dust from surfaces.

      4. A New Sense of Lightness
      In 1972, Apollo 16 astronaut Charles Duke hammered a core tube into the Moon’s surface until it met a rock and wouldn’t go any farther. Then the hammer flew from his hand. He made four attempts to pick it up by bending down and leaning to reach for it. He gave up and returned to the rover to get tongs to finally pick up the hammer successfully.
      NASA’s Johnson Space Center Artemis moonwalkers will have a bounce to their step as they traverse the lunar surface. This is because gravity won’t pull them down as forcefully as it does on Earth. The Moon is only a quarter of Earth’s size, with six times less gravity. Simple activities, like swinging a rock hammer to chip off samples, will feel different. While a hammer will feel lighter to hold, its inertia won’t change, leading to a strange sensation for astronauts. Lower gravity has perks, too. Astronauts won’t be weighed down by their hefty spacesuits as much as they would be on Earth. Plus, bouncing on the Moon is just plain fun.

      5. A Waxing Crescent … Earth?
      This animated image features a person holding a stick with a sphere on top that represents the Moon. The person is demonstrating an activity that helps people learn about the phases of the Moon by acting them out. NASA’s Jet Propulsion Laboratory When Artemis astronauts look at the sky from the Moon, they’ll see their home planet shining back at them. Just like Earthlings see different phases of the Moon throughout a month, astronauts will see an ever-shifting Earth. Earth phases occur opposite to Moon phases: When Earth experiences a new Moon, a full Earth is visible from the Moon.

      6. An Itty-Bitty Horizon 
      A view from the Apollo 11 spacecraft in July 1969 shows Earth rising above the Moon’s horizon. NASA Because the Moon is smaller than Earth, its horizon will look shorter and closer. To someone standing on a level Earth surface, the horizon is 3 miles away, but to astronauts on the Moon, it’ll be only 1.5 miles away, making their surroundings seem confined.

      7. Out-of-This-World Temperatures
      This graphic shows maximum summer and winter temperatures near the lunar South Pole. Purple, blue, and green identify cold regions, while yellow to red signify warmer ones. The graphic incorporates 10 years of data from NASA’s LRO (Lunar Reconnaissance Orbiter), which has been orbiting the Moon since 2009.
      NASA/LRO Diviner Seasonal Polar Data Because sunlight at the Moon’s South Pole skims the surface horizontally, it brushes crater rims, but doesn’t always reach their floors. Some deep craters haven’t seen the light of day for billions of years, so temperatures there can dip to minus 334 F. That’s nearly three times colder than the lowest temperature recorded in Antarctica. At the other extreme, areas in direct sunlight, such as crater rims, can reach temperatures of 130 F.

      8. An Inky-Black Sky
      To view this video please enable JavaScript, and consider upgrading to a web browser that
      supports HTML5 video
      An animated view of Earth emerging below the horizon as seen from the Moon’s South Pole. This visual was created using a digital elevation map from LRO’s laser altimeter, LOLA. NASA’s Scientific Visualization Studio The Moon, unlike Earth, doesn’t have a thick atmosphere to scatter blue light, so the daytime sky is black. Astronauts will see a stark contrast between the dark sky and the bright ground.

      9. A Rugged Terrain 
      To view this video please enable JavaScript, and consider upgrading to a web browser that
      supports HTML5 video
      An overhead view of the Moon, beginning with a natural color from a distance and changing to color-coded elevation as the camera comes closer. The visual captures the rugged terrain of the lunar South Pole area. It includes a color key and animated scale bar. This visual was created using a digital elevation map from NASA LRO’s laser altimeter, LOLA. NASA’s Scientific Visualization Studio Artemis moonwalkers will find a rugged landscape that takes skill to traverse. The Moon has mountains, valleys, and canyons, but its most notable feature for astronauts on the surface may be its millions of craters. Near the South Pole, gaping craters and long shadows will make it difficult for astronauts to navigate. But, with training and special gear, astronauts will be prepared to meet the challenge.

      By Avery Truman
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Share








      Details
      Last Updated Sep 11, 2024 Related Terms
      Artemis Earth’s Moon Exploration Systems Development Mission Directorate Humans in Space Missions NASA Directorates Planetary Science Division Science Mission Directorate The Solar System Explore More
      5 min read Voyager 1 Team Accomplishes Tricky Thruster Swap


      Article


      21 hours ago
      5 min read NASA’s Hubble, Chandra Find Supermassive Black Hole Duo


      Article


      2 days ago
      2 min read NASA Summer Camp Inspires Future Climate Leaders


      Article


      5 days ago
      Keep Exploring Discover More Topics From NASA
      Missions



      Humans in Space



      Climate Change



      Solar System


      View the full article
    • By NASA
      An artist’s concept of Intuitive Machines’ Nova-C lunar lander on the Moon’s South Pole.Credit: Intuitive Machines A new set of NASA science experiments and technology demonstrations will arrive at the lunar South Pole in 2027 following the agency’s latest CLPS (Commercial Lunar Payload Services) initiative delivery award. Intuitive Machines of Houston will receive $116.9 million to deliver six NASA payloads to a part of the Moon where nighttime temperatures are frigid, the terrain is rugged, and the permanently shadowed regions could help reveal the origin of water throughout our solar system.
      Part of the agency’s broader Artemis campaign, CLPS aims to conduct science on the Moon for the benefit of all, including experiments and demos that support missions with crew on the lunar surface.
      “This marks the 10th CLPS delivery NASA has awarded, and the fourth planned for delivery to the South Pole of the Moon,” said Joel Kearns, deputy associate administrator for exploration, Science Mission Directorate, NASA Headquarters in Washington. “By supporting a robust cadence of CLPS flights to a variety of locations on the lunar surface, including two flights currently planned by companies for later this year, NASA will explore more of the Moon than ever before.”
      NASA has awarded Intuitive Machine’s four task orders. The company delivered six NASA payloads to Malapert A in the South Pole region of the Moon in early 2024. With this lunar South Pole delivery, Intuitive Machines will be responsible for payload integration, launch from Earth, safe landing on the Moon, and mission operations.
      “The instruments on this newly awarded flight will help us achieve multiple scientific objectives and strengthen our understanding of the Moon’s environment,” said Chris Culbert, manager of the CLPS initiative at NASA’s Johnson Space Center in Houston. “For example, they’ll help answer key questions about where volatiles – such as water, ice, or gas – are found on the lunar surface and measure radiation in the South Pole region, which could advance our exploration efforts on the Moon and help us with continued exploration of Mars.”
      The instruments, collectively expected to be about 174 pounds (79 kilograms) in mass, include:
      The Lunar Explorer Instrument for Space Biology Applications will deliver yeast to the lunar surface and study its response to radiation and lunar gravity. The payload is managed by NASA’s Ames Research Center in Silicon Valley, California. Package for Resource Observation and In-Situ Prospecting for Exploration, Characterization and Testing is a suite of instruments that will drill down to 3.3 feet (1 meter) beneath the lunar surface, extract samples, and process them in-situ in a miniaturized laboratory, to identify possible volatiles (water, ice, or gas) trapped at extremely cold temperatures under the surface. This suite is led by ESA (European Space Agency).  The Laser Retroreflector Array is a collection of eight retroreflectors that will enable lasers to precisely measure the distance between a spacecraft and the reflector on the lander. The array is a passive optical instrument and will function as a permanent location marker on the Moon for decades to come. The retroflector array is managed by NASA’s Goddard Space Flight Center in Greenbelt, Maryland.  The Surface Exosphere Alterations by Landers will investigate the chemical response of lunar regolith to the thermal, physical, and chemical disturbances generated during a landing, and evaluate contaminants injected into the regolith by the lander. It will give insight into how a spacecraft landing might affect the composition of samples collected nearby. This payload is managed by NASA Goddard. The Fluxgate Magnetometer will characterize certain magnetic fields to improve the understanding of energy and particle pathways at the lunar surface and is managed by NASA Goddard. The Lunar Compact Infrared Imaging System will deploy a radiometer – a device that measures infrared wavelengths of light – to explore the Moon’s surface composition, map its surface temperature distribution, and demonstrate the instrument’s feasibility for future lunar resource utilization activities. The imaging system is managed by the Laboratory for Atmospheric and Space Physics at the University of Colorado at Boulder. Under CLPS, multiple commercial deliveries to different geographic regions will help NASA conduct science and continue working toward a long-term human presence on the Moon. Future deliveries will include sophisticated science experiments, and technology demonstrations as part of the agency’s Artemis campaign. Two upcoming CLPS flights slated to launch near the end of 2024 will deliver NASA payloads to the Moon’s nearside and South Pole, including the Intuitive Machines-2 delivery of NASA’s first on-site demonstration of searching for water and other chemical compounds 3.3 feet below the surface of the Moon, using a drill and mass spectrometer.
      Learn more about CLPS and Artemis at:
      https://www.nasa.gov/clps
      -end-
      Karen Fox
      Headquarters, Washington
      202-358-1275
      karen.c.fox@nasa.gov
      Laura Sorto / Natalia Riusech      
      Johnson Space Center, Houston
      281-483-5111
      laura.g.sorto@nasa.gov / natalia.s.riusech@nasa.gov
      Share
      Details
      Last Updated Aug 29, 2024 LocationNASA Headquarters Related Terms
      Commercial Lunar Payload Services (CLPS) Commercial Space Commercial Space Programs Earth's Moon Johnson Space Center NASA Headquarters View the full article
    • By European Space Agency
      ESA’s Solar Orbiter spacecraft has provided crucial data to answer the decades-long question of where the energy comes from to heat and accelerate the solar wind. Working in tandem with NASA’s Parker Solar Probe, Solar Orbiter reveals that the energy needed to help power this outflow is coming from large fluctuations in the Sun’s magnetic field.
      View the full article
  • Check out these Videos

×
×
  • Create New...