Jump to content

What’s Up: March 2024 Skywatching Tips from NASA


Recommended Posts

  • Publishers
Posted

6 min read

What’s Up: March 2024 Skywatching Tips from NASA

WHAT TO LOOK FOR:

Jupiter plows through the Pleiades on March 14, a chance to spot Mercury at month’s end along with a subtle lunar eclipse, and a comet worth keeping an eye on!

March skywatching highlights:

  • March 10 – New moon
  • March 13 – The Moon joins Jupiter tonight in the west, following sunset. They make a great pairing through binoculars.
  • March 14 – Tonight the crescent Moon moves through the Pleiades star cluster, creating a dazzling sight for skywatchers observing with binoculars.
  • March 21-25 – Northern Hemisphere viewers have their best chance of the year to spot Mercury in the evening sky. Look for it shining brightly, low in the west, starting half an hour after sunset.
  • March 24-25 – A subtle lunar eclipse called a penumbral eclipse will cause a slight decrease in the Moon’s brightness tonight. It’s usually difficult to see, but you might see the difference if you look before the eclipse and then at the peak. At the peak observers can sometimes see a subtle gradient in brightness across the Moon’s face.
  • March 25 – Full moon
  • March 25 – The full moon dims slightly during a penumbral lunar eclipse tonight, as it passes through the outer part of Earth’s shadow, the penumbra. The decrease in brightening for this type of eclipse is subtle, but you might be able to notice a slight gradient in brightness across the Moon’s face around the peak of the event.
  • All month – Comet 12P/Pons-Brooks is heading toward its closest approach to the Sun on its 71-year orbit, and is bright enough to observe in telescopes and binoculars. There’s a possibility it might become just visible to the unaided eye by late March or sometime in April.
An illustrated sky chart shows the evening sky facing west, about 45 minutes to an hour after sunset in March 2024. The planet Jupiter appears at left of center as a bright white dot. The constellation Casseopeia is seen at right as a
Sky chart showing the changing position of Comet 12P/Pons-Brooks during the month of March. Find the comet in the west-northwest as soon as the sky is fully dark. It moves lower as the month continues

Video Transcript

Text of the current month’s video.

What’s Up for March? Some close pair-ups with the Moon, and Mercury makes an appearance, a subtle lunar eclipse, and a chance to catch a comet.

In March, you’ll find Jupiter shining brightly in the west during the early evening hours all month long. And on March 13th, it’s joined by a crescent Moon so close that the pair will be visible together through binoculars.

An illustrated sky chart shows the evening sky facing westward, 1 hour after sunset on March 13, 2024. The crescent Moon appears midway up the sky near center, with Jupiter closeby on its left as a bright white dot.
Sky chart showing Jupiter with the Moon on the evening of March 13, one hour after sunset.
NASA/JPL-Caltech

On the following evening, the Moon visits the Pleiades. This is another close pairing – with the five-day-old lunar crescent hanging right next to the bright star cluster – that will look great through a small telescope or binoculars.

Near the end of March, observers in the Northern Hemisphere will have the best opportunity of the year to catch a glimpse of Mercury in the evening sky. Look for it shining brightly low in the west following sunset.

An illustrated sky chart shows the twilight sky facing west following sunset near the end of March 2024. The planet Jupiter appears as a bright white dot below center. Mercury is a slightly fainter white dot, very low in the sky.
Sky chart showing Jupiter and Mercury on the evenings of March 21-25 about 30-40 minutes after sunset.
NASA/JPL-Caltech

Overnight on March 24th and into the 25th, the Moon will pass through the outer part of Earth’s shadow, creating a faint lunar eclipse called a penumbral eclipse. Now, the more spectacular variety of lunar eclipses happens when the Moon passes through Earth’s inner shadow, or umbra. That’s when we see a dark “bite” taken out of the Moon, or in the case of a total lunar eclipse, a reddish, so-called “blood moon.” Penumbral eclipses cause only a slight dimming of the Moon’s brightness, so if you’re not looking for it, you might not know there was an eclipse happening. But if you glance at the Moon early in the night, and then later, around the peak of the eclipse, you might notice the difference in brightness.

Even faint lunar eclipses like this one are always accompanied by a solar eclipse either a couple of weeks before or after. And on April 8th, a total solar eclipse will sweep across the U.S. (We’ll tell you more about that in next month’s video.)

There’s a comet making its way into the inner solar system that’s already observable with a telescope, and might start to become visible to the unaided eye by late March or in April. It’s a mountain of rock, dust, and ice several miles wide named 12P/Pons-Brooks.

It has a stretched-out, 71-year-long orbit that carries it as far from the Sun as the orbit of Neptune and nearly as close as the orbit of Venus. Fortunately, because this orbit is tilted, it doesn’t cross our planet’s path, so there’s no chance of a collision.

Comet 12P has been observed on several of its previous appearances going back hundreds of years, and one thing it’s known for is its occasional outbursts. Sometimes this comet suddenly brightens by quite bit, due to bursts of gas and dust being released from beneath its surface. If this happens in the March-April timeframe as the comet nears the Sun, it could become bright enough to observe with the eye alone.

But even without additional brightening from outbursts, the comet is predicted to peak at a brightness that should make it easy to see with binoculars, and possibly just naked-eye visible under dark skies by the end of March.

Now, comets are notoriously unpredictable, so it’s hard to know for sure how bright Pons-Brooks will get as it nears the Sun, but it’s certainly worth a look. You can find it low in the west-northwest part of the sky at the end of evening twilight.

Comets, along with asteroids, are leftover pieces of the materials that formed the Sun and planets. So catch a comet and glimpse one of the building blocks of our solar system with your own eyes.

Here are the phases of the Moon for March.

The main phases of the Moon are illustrated in a horizontal row, with the third quarter moon on March 3rd, new moon on March 10th, first quarter on March 16th, and full moon on March 25th.
The phases of the Moon for March 2024.
NASA/JPL-Caltech

Stay up to date on NASA’s missions exploring the solar system and beyond at science.nasa.gov. I’m Preston Dyches from NASA’s Jet Propulsion Laboratory, and that’s What’s Up for this month.

Skywatching Resources

About the What’s Up production team

“What’s Up” is NASA’s longest running web video series. It had its first episode in April 2007 with original host Jane Houston Jones. Today, Preston Dyches, Christopher Harris, and Lisa Poje are the science communicators and space enthusiasts who produce this monthly video series at NASA’s Jet Propulsion Laboratory. Additional astronomy subject matter guidance is provided by JPL’s Bill Dunford, Gary Spiers, Lyle Tavernier, and GSFC’s Molly Wasser.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      NASA has awarded a task order to Florida Power and Light of Juno Beach, Florida, to provide electric distribution utility service at the agency’s Kennedy Space Center in Florida.
      This is a fixed-price task order with an estimated value of $70 million over five years. The contract consists of a two-year base period beginning July 1, 2025, followed by a two-year and a one-year option period.
      Under the contract, the awardee will provide all management, labor, transportation, facilities, materials, and equipment to provide electric distribution utility service up to and including all meters across the spaceport.
      For more information about NASA Kennedy, visit:
      https://www.nasa.gov/kennedy
      -end-
      Patti Bielling
      Kennedy Space Center, Florida
      321-501-7575
      patricia.a.bielling@nasa.gov
      View the full article
    • By NASA
      The Roscosmos Progress 90 cargo craft approaches the International Space Station for a docking to the Poisk module delivering nearly three tons of food, fuel, and supplies replenishing the Expedition 72 crew. Credit: NASA NASA will provide live coverage of the launch and docking of a Roscosmos cargo spacecraft delivering approximately three tons of food, fuel, and supplies to the Expedition 73 crew aboard the International Space Station.
      The unpiloted Roscosmos Progress 92 spacecraft is scheduled to launch at 3:32 p.m. EDT, Thursday, July 3 (12:32 a.m. Baikonur time, Friday, July 4), on a Soyuz rocket from the Baikonur Cosmodrome in Kazakhstan.
      Live launch coverage will begin at 3:10 p.m. on NASA+. Learn how to watch NASA content through a variety of platforms, including social media.
      After a two-day, in-orbit journey to the station, the spacecraft will dock autonomously to the space-facing port of the orbiting laboratory’s Poisk module at 5:27 p.m. on Saturday, July 5. NASA’s rendezvous and docking coverage will begin at 4:45 p.m. on NASA+.
      The Progress 92 spacecraft will remain docked to the space station for approximately six months before departing for re-entry into Earth’s atmosphere to dispose of trash loaded by the crew.
      Ahead of the spacecraft’s arrival, the Progress 90 spacecraft will undock from the Poisk module on Tuesday, July 1. NASA will not stream undocking.
      The International Space Station is a convergence of science, technology, and human innovation that enables research not possible on Earth. For nearly 25 years, NASA has supported a continuous U.S. human presence aboard the orbiting laboratory, through which astronauts have learned to live and work in space for extended periods of time. The space station is a springboard for developing a low Earth economy and NASA’s next great leaps in exploration, including missions to the Moon under Artemis and, ultimately, human exploration of Mars.
      Learn more about the International Space Station, its research, and crew, at:
      https://www.nasa.gov/station
      -end-
      Jimi Russell
      Headquarters, Washington
      202-358-1100
      james.j.russell@nasa.gov  
      Sandra Jones / Joseph Zakrzewski
      Johnson Space Center, Houston
      281-483-5111
      sandra.p.jones@nasa.gov / joseph.a.zakrzewski@nasa.gov
      Share
      Details
      Last Updated Jun 30, 2025 LocationNASA Headquarters Related Terms
      Humans in Space International Space Station (ISS) Johnson Space Center NASA Headquarters View the full article
    • By NASA
      Artist’s concept.Credit: NASA NASA announced Monday its latest plans to team up with a streaming service to bring space a little closer to home. Starting this summer, NASA+ live programming will be available on Netflix.
      Audiences now will have another option to stream rocket launches, astronaut spacewalks, mission coverage, and breathtaking live views of Earth from the International Space Station.
      “The National Aeronautics and Space Act of 1958 calls on us to share our story of space exploration with the broadest possible audience,” said Rebecca Sirmons, general manager of NASA+ at the agency’s headquarters in Washington. “Together, we’re committed to a Golden Age of Innovation and Exploration – inspiring new generations – right from the comfort of their couch or in the palm of their hand from their phone.”
      Through this partnership, NASA’s work in science and exploration will become even more accessible, allowing the agency to increase engagement with and inspire a global audience in a modern media landscape, where Netflix reaches a global audience of more than 700 million people.
      The agency’s broader efforts include connecting with as many people as possible through video, audio, social media, and live events. The goal is simple: to bring the excitement of the agency’s discoveries, inventions, and space exploration to people, wherever they are.
      NASA+ remains available for free, with no ads, through the NASA app and on the agency’s website.
      Additional programming details and schedules will be announced ahead of launch.
      For more about NASA’s missions, visit:
      https://www.nasa.gov
      -end-
      Cheryl Warner
      Headquarters, Washington
      202-358-1600
      cheryl.m.warner@nasa.gov
      Share
      Details
      Last Updated Jun 30, 2025 LocationNASA Headquarters Related Terms
      Brand Partnerships NASA+ View the full article
    • By European Space Agency
      Asteroid 2024 YR4 made headlines earlier this year when its probability of impacting Earth in 2032 rose as high as 3%. While an Earth impact has now been ruled out, the asteroid’s story continues.
      The final glimpse of the asteroid as it faded out of view of humankind’s most powerful telescopes left it with a 4% chance of colliding with the Moon on 22 December 2032.
      The likelihood of a lunar impact will now remain stable until the asteroid returns to view in mid-2028. In this FAQ, find out why we are left with this lingering uncertainty and how ESA's planned NEOMIR space telescope will help us avoid similar situations in the future.
      View the full article
    • By NASA
      6 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA Ames research scientist Kristina Pistone monitors instrument data while onboard the Twin Otter aircraft, flying over Monterey Bay during the October 2024 deployment of the AirSHARP campaign. NASA/Samuel Leblanc In autumn 2024, California’s Monterey Bay experienced an outsized phytoplankton bloom that attracted fish, dolphins, whales, seabirds, and – for a few weeks in October – scientists. A team from NASA’s Ames Research Center in Silicon Valley, with partners at the University of California, Santa Cruz (UCSC), and the Naval Postgraduate School, spent two weeks on the California coast gathering data on the atmosphere and the ocean to verify what satellites see from above. In spring 2025, the team returned to gather data under different environmental conditions.

      Scientists call this process validation.

      Setting up the Campaign

      The PACE mission, which stands for Plankton, Aerosol, Cloud, ocean Ecosystem, was launched in February  2024 and designed to transform our understanding of ocean and atmospheric environments. Specifically, the satellite will give scientists a finely detailed look at life near the ocean surface and the composition and abundance of aerosol particles in the atmosphere.

      Whenever NASA launches a new satellite, it sends validation science teams around the world to confirm that the data from instruments in space match what traditional instruments can see at the surface. AirSHARP (Airborne aSsessment of Hyperspectral Aerosol optical depth and water-leaving Reflectance Product Performance for PACE) is one of these teams, specifically deployed to validate products from the satellite’s Ocean Color Instrument (OCI).

      The OCI spectrometer works by measuring reflected sunlight. As sunlight bounces off of the ocean’s surface, it creates specific shades of color that researchers use to determine what is in the water column below. To validate the OCI data, research teams need to confirm that measurements directly at the surface match those from the satellite. They also need to understand how the atmosphere is changing the color of the ocean as the reflected light is traveling back to the satellite.

      In October 2024 and May 2025, the AirSHARP team ran simultaneous airborne and seaborne campaigns. Going into the field during different seasons allows the team to collect data under different environmental conditions, validating as much of the instrument’s range as possible.

      Over 13 days of flights on a Twin Otter aircraft, the NASA-led team used instruments called 4STAR-B (Spectrometer for sky-scanning sun Tracking Atmospheric Research B), and the C-AIR (Coastal Airborne In-situ Radiometer) to gather data from the air. At the same time, partners from UCSC used a host of matching instruments onboard the research vessel R/V Shana Rae to gather data from the water’s surface.

      Ocean Color and Water Leaving Reflectance

      The Ocean Color Instrument measures something called water leaving reflectance, which provides information on the microscopic composition of the water column, including water molecules, phytoplankton, and particulates like sand, inorganic materials, and even bubbles. Ocean color varies based on how these materials absorb and scatter sunlight. This is especially useful for determining the abundance and types of phytoplankton.

      Photographs taken out the window of the Twin Otter aircraft during the October 2024 AirSHARP deployment showcase the variation in ocean color, which indicates different molecular composition of the water column beneath. The red color in several of these photos is due to a phytoplankton bloom – in this case a growth of red algae. NASA/Samuel Leblanc
      The AirSHARP team used radiometers with matching technology – C-AIR from the air and C-OPS (Compact Optical Profiling System) from the water – to gather water leaving reflectance data.

      “The C-AIR instrument is modified from an instrument that goes on research vessels and takes measurements of the water’s surface from very close range,” said NASA Ames research scientist Samuel LeBlanc. “The issue there is that you’re very local to one area at a time. What our team has done successfully is put it on an aircraft, which enables us to span the entire Monterey Bay.”

      The larger PACE validation team will compare OCI measurements with observations made by the sensors much closer to the ocean to ensure that they match, and make adjustments when they don’t. 

      Aerosol Interference

      One factor that can impact OCI data is the presence of manmade and natural aerosols, which interact with sunlight as it moves through the atmosphere. An aerosol refers to any solid or liquid suspended in the air, such as smoke from fires, salt from sea spray, particulates from fossil fuel emissions, desert dust, and pollen.

      Imagine a 420 mile-long tube, with the PACE satellite at one end and the ocean at the other. Everything inside the tube is what scientists refer to as the atmospheric column, and it is full of tiny particulates that interact with sunlight. Scientists quantify this aerosol interaction with a measurement called aerosol optical depth.

      “During AirSHARP, we were essentially measuring, at different wavelengths, how light is changed by the particles present in the atmosphere,” said NASA Ames research scientist Kristina Pistone. “The aerosol optical depth is a measure of light extinction, or how much light is either scattered away or absorbed by aerosol particulates.” 

      The team measured aerosol optical depth using the 4STAR-B spectrometer, which was engineered at NASA Ames and  enables scientists to identify which aerosols are present and how they interact with sunlight.

      Twin Otter Aircraft

      AirSHARP principal investigator Liane Guild walks towards a Twin Otter aircraft owned and operated by the Naval Postgraduate School. The aircraft’s ability to perform complex, low-altitude flights made it the ideal platform to fly multiple instruments over Monterey Bay during the AirSHARP campaign. NASA/Samuel Leblanc
      Flying these instruments required use of a Twin Otter plane, operated by the Naval Postgraduate School (NPS). The Twin Otter is unique for its ability to perform extremely low-altitude flights, making passes down to 100 feet above the water in clear conditions.

      “It’s an intense way to fly. At that low height, the pilots continually watch for and avoid birds, tall ships, and even wildlife like breaching whales,” said Anthony Bucholtz, director of the Airborne Research Facility at NPS.

      With the phytoplankton bloom attracting so much wildlife in a bay already full of ships, this is no small feat. “The pilots keep a close eye on the radar, and fly by hand,” Bucholtz said, “all while following careful flight plans crisscrossing Monterey Bay and performing tight spirals over the Research Vessel Shana Rae.”

      Campaign Data

      Data gathered from the 2024 phase of this campaign is available on two data archive systems. Data from the 4STAR instrument is available in the PACE data archive  and data from C-AIR is housed in the SeaBASS data archive.

      Other data from the NASA PACE Validation Science Team is available through the PACE website: https://pace.oceansciences.org/pvstdoi.htm#
      Samuel LeBlanc and Kristina Pistone are funded via the Bay Area Environmental Research Institute (BAERI), which  is a scientist-founded nonprofit focused on supporting Earth and space sciences.
      About the Author
      Milan Loiacono
      Science Communication SpecialistMilan Loiacono is a science communication specialist for the Earth Science Division at NASA Ames Research Center.
      Share
      Details
      Last Updated Jun 26, 2025 Related Terms
      Ames Research Center's Science Directorate Ames Research Center Earth Earth Science Earth Science Division PACE (Plankton, Aerosol, Cloud, Ocean Ecosystem) Science Mission Directorate Explore More
      2 min read NASA Citizen Scientists Find New Eclipsing Binary Stars
      When two stars orbit one another in such a way that one blocks the other’s…
      Article 32 minutes ago 4 min read NASA-Assisted Scientists Get Bird’s-Eye View of Population Status
      NASA satellite data and citizen science observations combine for new findings on bird populations.
      Article 22 hours ago 2 min read Live or Fly a Plane in California? Help NASA Measure Ozone Pollution!
      Ozone high in the stratosphere protects us from the Sun’s ultraviolet light. But ozone near…
      Article 2 days ago View the full article
  • Check out these Videos

×
×
  • Create New...