Jump to content

Unveiling the Sun: NASA’s Open Data Approach to Solar Eclipse Research


Recommended Posts

  • Publishers
Posted

3 min read

Unveiling the Sun: NASA’s Open Data Approach to Solar Eclipse Research

Sun blocked by Moon in total eclipse, with just the solar corona visible as a glow around the silhouetted Moon
A total solar eclipse is seen on Monday, August 21, 2017 above Madras, Oregon. A total solar eclipse swept across a narrow portion of the contiguous United States from Lincoln Beach, Oregon to Charleston, South Carolina. A partial solar eclipse was visible across the entire North American continent along with parts of South America, Africa, and Europe.
NASA/Aubrey Gemignani

As the world eagerly anticipates the upcoming total solar eclipse on April 8, 2024, NASA is preparing for an extraordinary opportunity for scientific discovery, open collaboration, and public engagement. At the heart of the agency’s approach to this unusual event lies a commitment to open science, ensuring that the data captured during the eclipse is readily accessible to all.

During a total solar eclipse the normal rhythms of Earth are briefly disrupted, providing an unusual opportunity for scientists to study the atmosphere of our solar-powered planet. Because NASA uses the vantage point of space to understand and explore our home planet to improve lives and safeguard our future, solar eclipses offer scientists a one-of-a-kind window into the workings of our solar system. 

While they offer a treasure trove of data for formal researchers, eclipses are also a fantastic opportunity for citizen scientists to participate in a celestial event. Participants from all backgrounds can work together with NASA to make discoveries possible before, during, and after an eclipse – regardless of where they are in the eclipse path. For example, citizen science projects like the Citizen CATE Experiment, which mobilizes volunteers to set up telescopes along the path, contribute greatly to data collection efforts.

A young boy wearing space-themed clothes smiles as he holds a pair of solar eclipse glasses to his face.
A boy watches the total solar eclipse through protective glasses in Madras, Oregon on Monday, Aug. 21, 2017. A total solar eclipse swept across a narrow portion of the contiguous United States from Lincoln Beach, Oregon to Charleston, South Carolina. A partial solar eclipse was visible across the entire North American continent along with parts of South America, Africa, and Europe.
NASA/Aubrey Gemignani

Additionally, NASA has introduced innovative tools like SunSketcher, a user-friendly platform that allows enthusiasts to sketch the sun’s corona during an eclipse. These sketches contribute valuable qualitative data alongside quantitative measurements, enriching our understanding of solar phenomena and enhancing public engagement in scientific endeavors. By involving amateur astronomers and enthusiasts, NASA not only expands its observational reach but also fosters community engagement and participation in scientific discovery.

NASA is committed to open science and making scientific data available to everyone. Following each solar eclipse, the agency shares the data collected with the global community. Through publicly available datasets, accessible via online repositories and dedicated eclipse websites, NASA ensures that researchers, educators, students, and enthusiasts alike can delve into the intricacies of eclipse observations. By sharing data and resources, NASA facilitates interdisciplinary research and broadens understanding of solar phenomena on a global scale. 

Ahead of the 2024 Total Solar Eclipse, the NASA Transform to Open Science (TOPS) team will participate in several activities in the Uvalde, Texas area to educate the public about the data-driven domain of eclipses and how open science principles facilitate the sharing and analysis of information among researchers, students and enthusiasts. For a full schedule of NASA TOPS events, please be sure to check the TOPS 2024 Total Solar Eclipse Event page. For a complete list of NASA 2024 Total Solar Eclipse events, visit the NASA eclipse event page.

For more information about the 2024 Total Solar Eclipse, visit:
https://science.nasa.gov/eclipses/future-eclipses/eclipse-2024/

For more information on NASA’s commitment to open science, including NASA’s Open Science 101 training on how to participate in open science, visit:
https://science.nasa.gov/researchers/open-science/

By Amanda Moon Adams
Communications Lead for the Office of the Chief Science Data Officer

Share

Details

Last Updated
Mar 29, 2024

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By Amazing Space
      REPLAY 2nd JUly Sun Close up Views/ Backyard Astronomy with Lunt Telescope
    • By Space Force
      The Year of the Company Grade Officer focuses on the junior officer corps — aiming to expand pride in service through building an empowered culture of discipline, ownership, excellence and proactive leadership.

      View the full article
    • By Amazing Space
      Solar Tracking Sunspots - Seestar s50
    • By Amazing Space
      LIVE NOW: 2nd JUly Sun Close up Views/ Backyard Astronomy with Lunt Telescope
    • By NASA
      An unexpectedly strong solar storm rocked our planet on April 23, 2023, sparking auroras as far south as southern Texas in the U.S. and taking the world by surprise. 
      Two days earlier, the Sun blasted a coronal mass ejection (CME) — a cloud of energetic particles, magnetic fields, and solar material — toward Earth. Space scientists took notice, expecting it could cause disruptions to Earth’s magnetic field, known as a geomagnetic storm. But the CME wasn’t especially fast or massive, and it was preceded by a relatively weak solar flare, suggesting the storm would be minor. But it became severe.
      Using NASA heliophysics missions, new studies of this storm and others are helping scientists learn why some CMEs have more intense effects — and better predict the impacts of future solar eruptions on our lives.
      During the night of April 23 to 24, 2023, a geomagnetic storm produced auroras that were witnessed as far south as Arizona, Arkansas, and Texas in the U.S. This photo shows green aurora shimmering over Larimore, North Dakota, in the early morning of April 24. Copyright Elan Azriel, used with permission Why Was This Storm So Intense?
      A paper published in the Astrophysical Journal on March 31 suggests the CME’s orientation relative to Earth likely caused the April 2023 storm to become surprisingly strong.
      The researchers gathered observations from five heliophysics spacecraft across the inner solar system to study the CME in detail as it emerged from the Sun and traveled to Earth.
      They noticed a large coronal hole near the CME’s birthplace. Coronal holes are areas where the solar wind — a stream of particles flowing from the Sun — floods outward at higher than normal speeds.
      “The fast solar wind coming from this coronal hole acted like an air current, nudging the CME away from its original straight-line path and pushing it closer to Earth’s orbital plane,” said the paper’s lead author, Evangelos Paouris of the Johns Hopkins Applied Physics Laboratory in Laurel, Maryland. “In addition to this deflection, the CME also rotated slightly.”
      Paouris says this turned the CME’s magnetic fields opposite to Earth’s magnetic field and held them there — allowing more of the Sun’s energy to pour into Earth’s environment and intensifying the storm.
      The strength of the April 2023 geomagnetic storm was a surprise in part because the coronal mass ejection (CME) that produced it followed a relatively weak solar flare, seen as the bright area to the lower right of center in this extreme ultraviolet image of the Sun from NASA’s Solar Dynamics Observatory. The CMEs that produce severe geomagnetic storms are typically preceded by stronger flares. However, a team of scientists think fast solar wind from a coronal hole (the dark area below the flare in this image) helped rotate the CME and made it more potent when it struck Earth. NASA/SDO Cool Thermosphere
      Meanwhile, NASA’s GOLD (Global-scale Observations of Limb and Disk) mission revealed another unexpected consequence of the April 2023 storm at Earth.
      Before, during, and after the storm, GOLD studied the temperature in the middle thermosphere, a part of Earth’s upper atmosphere about 85 to 120 miles overhead. During the storm, temperatures increased throughout GOLD’s wide field of view over the Americas. But surprisingly, after the storm, temperatures dropped about 90 to 198 degrees Fahrenheit lower than they were before the storm (from about 980 to 1,070 degrees Fahrenheit before the storm to 870 to 980 degrees Fahrenheit afterward).
      “Our measurement is the first to show widespread cooling in the middle thermosphere after a strong storm,” said Xuguang Cai of the University of Colorado, Boulder, lead author of a paper about GOLD’s observations published in the journal JGR Space Physics on April 15, 2025.
      The thermosphere’s temperature is important, because it affects how much drag Earth-orbiting satellites and space debris experience.
      “When the thermosphere cools, it contracts and becomes less dense at satellite altitudes, reducing drag,” Cai said. “This can cause satellites and space debris to stay in orbit longer than expected, increasing the risk of collisions. Understanding how geomagnetic storms and solar activity affect Earth’s upper atmosphere helps protect technologies we all rely on — like GPS, satellites, and radio communications.”
      Predicting When Storms Strike
      To predict when a CME will trigger a geomagnetic storm, or be “geoeffective,” some scientists are combining observations with machine learning. A paper published last November in the journal Solar Physics describes one such approach called GeoCME.
      Machine learning is a type of artificial intelligence in which a computer algorithm learns from data to identify patterns, then uses those patterns to make decisions or predictions.
      Scientists trained GeoCME by giving it images from the NASA/ESA (European Space Agency) SOHO (Solar and Heliospheric Observatory) spacecraft of different CMEs that reached Earth along with SOHO images of the Sun before, during, and after each CME. They then told the model whether each CME produced a geomagnetic storm.
      Then, when it was given images from three different science instruments on SOHO, the model’s predictions were highly accurate. Out of 21 geoeffective CMEs, the model correctly predicted all 21 of them; of 7 non-geoeffective ones, it correctly predicted 5 of them.
      “The algorithm shows promise,” said heliophysicist Jack Ireland of NASA’s Goddard Space Flight Center in Greenbelt, Maryland, who was not involved in the study. “Understanding if a CME will be geoeffective or not can help us protect infrastructure in space and technological systems on Earth. This paper shows machine learning approaches to predicting geoeffective CMEs are feasible.”
      The white cloud expanding outward in this image sequence is a coronal mass ejection (CME) that erupted from the Sun on April 21, 2023. Two days later, the CME struck Earth and produced a surprisingly strong geomagnetic storm. The images in this sequence are from a coronagraph on the NASA/ESA (European Space Agency) SOHO (Solar and Heliospheric Observatory) spacecraft. The coronagraph uses a disk to cover the Sun and reveal fainter details around it. The Sun’s location and size are indicated by a small white circle. The planet Jupiter appears as a bright dot on the far right. NASA/ESA/SOHO Earlier Warnings
      During a severe geomagnetic storm in May 2024 — the strongest to rattle Earth in over 20 years — NASA’s STEREO (Solar Terrestrial Relations Observatory) measured the magnetic field structure of CMEs as they passed by.
      When a CME headed for Earth hits a spacecraft first, that spacecraft can often measure the CME and its magnetic field directly, helping scientists determine how strong the geomagnetic storm will be at Earth. Typically, the first spacecraft to get hit are one million miles from Earth toward the Sun at a place called Lagrange Point 1 (L1), giving us only 10 to 60 minutes advanced warning.
      By chance, during the May 2024 storm, when several CMEs erupted from the Sun and merged on their way to Earth, NASA’s STEREO-A spacecraft happened to be between us and the Sun, about 4 million miles closer to the Sun than L1.
      A paper published March 17, 2025, in the journal Space Weather reports that if STEREO-A had served as a CME sentinel, it could have provided an accurate prediction of the resulting storm’s strength 2 hours and 34 minutes earlier than a spacecraft could at L1.
      According to the paper’s lead author, Eva Weiler of the Austrian Space Weather Office in Graz, “No other Earth-directed superstorm has ever been observed by a spacecraft positioned closer to the Sun than L1.”
      Earth’s Lagrange points are places in space where the gravitational pull between the Sun and Earth balance, making them relatively stable locations to put spacecraft. NASA By Vanessa Thomas
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      View the full article
  • Check out these Videos

×
×
  • Create New...