Members Can Post Anonymously On This Site
Unveiling the Sun: NASA’s Open Data Approach to Solar Eclipse Research
-
Similar Topics
-
By NASA
NASA’s SpaceX Crew-9 commander Nick Hague is pictured in his flight suit during training at SpaceX headquarters in Hawthorne, California. Hague will perform human health and performance research on the International Space Station as part of his mission.SpaceX NASA astronaut Nick Hague and Roscosmos cosmonaut Aleksandr Gorbunov will soon dock with the International Space Station as part of the agency’s SpaceX Crew-9 mission, a venture which will enhance scientific research and bolster the knowledge about how people can live and work in space.
During the planned five-month mission, Hague’s mission tasks will include participating in a variety of research projects for NASA’s Human Research Program. Each study is designed to help address the health challenges that astronauts may face during future long-duration missions to the Moon, Mars, and beyond.
“Hague’s experiences and research may potentially lead to scientific breakthroughs that may not be possible on Earth,” said Steven Platts, chief scientist for human research at NASA’s Johnson Space Center in Houston.
A major focus for Hague’s time aboard the station is to study the suite of space-related vision disorders called Spaceflight Associated Neuro-ocular Syndrome (SANS) which occur as body fluids shift toward the head in weightlessness. These shifts can cause changes to the eye: the optic nerve can swell, the retina may develop folds, and the back of the eye can even flatten. Earlier research suggests multiple factors contribute to the syndrome, so two vision-related studies on this mission will tackle different yet distinct approaches that may help address or even prevent such changes during future missions.
One project, called Thigh Cuff, will explore whether wearing fitted cuffs could counter the syndrome by keeping more bodily fluids in the legs. Thigh cuffs are compact, lightweight, and easy to use, which makes them appealing for potential use during long-duration, deep space missions.
For this study, Hague will wear the thigh cuffs for six hours during two sessions. To help researchers measure how well the cuffs work, he will record ultrasound images of blood flow in his legs and neck veins during the sessions. Researchers will also compare this data against ultrasounds taken without the cuff to examine flow differences.
“Thigh cuffs like these may allow researchers to better investigate medical conditions that result in extra fluid in the brain or too much blood returning to the heart,” said study leader Brandon Macias at NASA Johnson.
In another study, Hague will test if a vitamin regimen may help combat SANS. The study, led by Sara Zwart, a nutritional biochemist at NASA Johnson, seeks to examine if a daily vitamin B supplement—taken before, during, and after flight—can prevent or mitigate swelling at the back of the eye. The research will also assess how an individual’s genetics may influence the response.
“Earlier research suggests that some people are more susceptible to this ocular syndrome than others based on genetics that can influence B vitamin requirements, so taking daily vitamins may make all the difference,” Zwart said. “We think by giving the B vitamins, we could be taking that piece of genetic variability out of the equation.”
The work also may eventually improve care options for women on Earth with polycystic ovary syndrome, a condition that can cause eye changes and infertility in women. Researchers hope that patients may similarly benefit from targeting the same genetic pathways and vitamin supplementation as crew members in space.
Hague also will record data to study whether a new way of administering a common anti-nausea medicine can help alleviate motion sickness following launch and landing. In this study, Hague can self-administer a novel nasal gel formulation of the medication scopolamine. Hague will note his experiences using this medicine and any other motion sickness aides, including alternative medications or behavioral interventions like specific head movements.
This research, led by neuroscientist Scott Wood of NASA Johnson, eventually will include 48 people.
“Our goal is to understand how to help future space travelers adapt to motion sickness when living and working in space,” Wood said. “Crew members must stay healthy and perform key tasks, including landing on the Moon and other destinations.”
To help NASA plan future missions, Hague also will participate in human research studies that tackle other space challenges, such as avoiding injury upon landing back on Earth and learning how space travel affects the human body on a molecular level.
____
NASA’s Human Research Program pursues the best methods and technologies to support safe, productive human space travel. The program studies how spaceflight affects human bodies and behaviors through science conducted in laboratories, ground-based analogs, commercial missions, and the International Space Station. Such research continues to drive NASA’s mission to innovate ways that keep astronauts healthy and mission-ready as space exploration expands to the Moon, Mars, and beyond.
Explore More
1 min read NASA Invites Public to Join as Virtual Guests for SpaceX Crew-9 Launch
Article 2 days ago 4 min read Educational Activities in Space
Article 4 days ago 4 min read NASA Astronaut Tracy C. Dyson’s Scientific Mission aboard Space Station
Article 1 week ago Keep Exploring Discover More Topics From NASA
Living in Space
Artemis
Human Research Program
Space Station Research and Technology
View the full article
-
By Space Force
Delta 8 recently partnered with the JCO cell integrate Space Cockpit-customized dashboards into their COP on their operations floors providing them a tailored approach to domain awareness and to set specific alert parameters to bring their attention quickly to an asset that may be at risk.
View the full article
-
By NASA
Illustration of NASA’s BioSentinel spacecraft as it enters a heliocentric orbit. BioSentinel collected data during the May 2024 geomagnetic storm that hit Earth to learn more about the impacts of radiation in deep space.NASA/Daniel Rutter In May 2024, a geomagnetic storm hit Earth, sending auroras across the planet’s skies in a once-in-a-generation light display. These dazzling sights are possible because of the interaction of coronal mass ejections – explosions of plasma and magnetic field from the Sun – with Earth’s magnetic field, which protects us from the radiation the Sun spits out during turbulent storms.
But what might happen to humans beyond the safety of Earth’s protection? This question is essential as NASA plans to send humans to the Moon and on to Mars. During the May storm, the small spacecraft BioSentinel was collecting data to learn more about the impacts of radiation in deep space.
“We wanted to take advantage of the unique stage of the solar cycle we’re in – the solar maximum, when the Sun is at its most active – so that we can continue to monitor the space radiation environment,” said Sergio Santa Maria, principal investigator for BioSentinel’s spaceflight mission at NASA’s Ames Research Center in California’s Silicon Valley. “These data are relevant not just to the heliophysics community but also to understand the radiation environment for future crewed missions into deep space.”
BioSentinel – a small satellite about the size of a cereal box – is currently over 30 million miles from Earth, orbiting the Sun, where it weathered May’s coronal mass ejection without protection from a planetary magnetic field. Preliminary analysis of the data collected indicates that even though this was an extreme geomagnetic storm, that is, a storm that disturbs Earth’s magnetic field, it was considered just a moderate solar radiation storm, meaning it did not produce a great increase in hazardous solar particles. Therefore, such a storm did not pose any major issue to terrestrial lifeforms, even if they were unprotected as BioSentinel was. These measurements provide useful information for scientists trying to understand how solar radiation storms move through space and where their effects – and potential impacts on life beyond Earth – are most intense.
NASA’s Solar Dynamics Observatory captured this image of a solar flare on May 11, 2024. The image shows a subset of extreme ultraviolet light that highlights the extremely hot material in flares.NASA/SDO The original mission of BioSentinel was to study samples of yeast in deep space. Though these yeast samples are no longer alive, BioSentinel has adapted and continues to be a novel platform for studying the potential impacts of deep space conditions on life beyond the protection of Earth’s atmosphere and magnetosphere. The spacecraft’s biosensor instrument collects data about the radiation in deep space. Over a year and a half after its launch in Nov. 2022, BioSentinel retreats farther away from Earth, providing data of increasing value to scientists.
“Even though the biological part of the BioSentinel mission was completed a few months after launch, we believe that there is significant scientific value in continuing with the mission,” said Santa Maria. “The fact that the CubeSat continues to operate and that we can communicate with it, highlights the potential use of the spacecraft and many of its subsystems and components for future long-term missions beyond low Earth orbit.”
When we see auroras in the sky, they can serve as a stunning reminder of all the forces we cannot see that govern our cosmic neighborhood. As NASA and its partners seek to understand more about space environments, platforms like BioSentinel are essential to learn more about the risks of surviving beyond Earth’s sphere of protection.
Share
Details
Last Updated Sep 26, 2024 Related Terms
General Ames Research Center Ames Research Center's Science Directorate Ames Space Biosciences CubeSats NASA Centers & Facilities Science & Research Small Satellite Missions View the full article
-
By NASA
4 min read
Pioneer of Change: America Reyes Wang Makes NASA Space Biology More Open
America Reyes Wang, the lead of the the Space Biology Biospecimen Sharing Program at NASA’s Ames Research Center in California’s Silicon Valley, stands beside a spacesuit display. Photo courtesy of America Reyes Wang As humans return to the Moon and push on toward Mars, scientists are ramping up research into the effects of space on the body to make sure astronauts stay healthy on longer missions. This research often involves spaceflight studies of rodents, insects, and other models in orbiting laboratories such as the International Space Station. However, space-related biological samples are difficult to get, meaning that researchers who want to study space biology are frequently out of luck.
America Reyes Wang, a KBR employee and the lead of the Space Biology Biospecimen Sharing Program at NASA’s Ames Research Center in California’s Silicon Valley, oversees the team that has changed that. Birthed from an initiative first pioneered in the 1960s, the Biospecimen Sharing Program collects samples and data from NASA non-human space biology studies and makes them available in the public, open NASA Open Science Data Repository (OSDR).
To derive the most benefit from the precious few biology studies taking place in space, Reyes Wang arranges collaborations on space biology dissections with NASA-funded researchers so that her team can collect and preserve unutilized biospecimens for others to use. Outside researchers can request the samples to study in person by writing and submitting proposals. Once analyzed, researchers share their data back with the NASA OSDR for other investigators to access and study.
The ethos of open science is central to Reyes Wang’s approach to her work. “The samples that we work with are so precious,” she said. “To me, it’s a no-brainer — why not share what we can share?”
America Reyes Wang wears personal protective equipment (PPE) while working on an activity for NASA’s Biospecimen Sharing Program. Photo courtesy of America Reyes Wang Reyes Wang aspired to work in the scientific or medical field from a young age, driven by her desire to help people. Her father, who was born in El Salvador and dreamed of being an astronaut after watching the 1969 Moon landing, inspired Reyes Wang to fall in love with space. She also credited her Salvadoran and Mexican family with teaching her the value of understanding different experiences.
“To me, being Hispanic, especially as a Latina in STEM, means recognizing and building upon the hard work and sacrifices of those who came before me, as well as extending a helping hand to those around me for the betterment of us all,” Reyes Wang said. “It also means enjoying and sharing our vibrant cultures.”
As a student at Stanford University, Reyes Wang conducted neurobiology research with rodents, but assumed she would have to choose her love of biology over her love of space. The field of space biology allowed her to combine those interests. Having quietly dreamed of working for NASA for years, she was also thrilled to find that she could work on NASA missions as a space biologist.
If we want to keep up with the pace of humanity’s aspirations to travel further and for longer … open science is one of the best tools we have for achieving those dreams.
America Reyes Wang
Biospecimen Sharing Program Lead
Reyes Wang first found a role supporting NASA as an experiment support scientist for the agency’s Rodent Research Program. While she no longer facilitates research on the International Space Station in her current position, she uses her scientific expertise and collaborative outlook to guide the Biospecimen Sharing Program in a direction that will most help advance science.
Despite space biology’s status as a relatively niche field, Reyes Wang has noted its tremendous impact on the biological sciences, medicine, and technology as a whole. For example, spaceflown biological samples are often used to investigate diseases that affect people on Earth. Reyes Wang’s involvement in accelerating these studies captures her long-held desire to help people.
“Open science gives the world an opportunity to get these important answers much more quickly,” Reyes Wang said. “If we want to keep up with the pace of humanity’s aspirations to travel further and for longer, we need to pick up the pace when it comes to getting the answers, and I think open science is one of the best tools we have for achieving those dreams.”
By Lauren Leese
Web Content Strategist for the Office of the Chief Science Data Officer
Share
Details
Last Updated Sep 26, 2024 Related Terms
Biological & Physical Sciences Open Science Space Biology Explore More
1 min read Women in Astronomy Citizen Science Webinar This Thursday
Article
3 days ago
4 min read NASA Awards 15 Grants to Support Open-Source Science
Article
1 month ago
2 min read Geospatial AI Foundation Model Team Receives NASA Marshall Group Achievement Award
Article
1 month ago
Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By European Space Agency
Video: 00:00:29 Solar wind is a never-ending stream of charged particles coming from the Sun. Rather than a constant breeze, this wind is rather gusty. As solar wind particles travel through space, they interact with the Sun's variable magnetic field, creating chaotic and fluctuating motion known as turbulence.
This video confirms something long suspected: the turbulent motion of solar wind begins very close to the Sun, inside the solar atmosphere known as the corona. Small disturbances affecting solar wind in the corona are carried outward and expand, generating turbulent flow further out in space.
By blocking out direct light coming from the Sun, the Metis coronagraph instrument on Solar Orbiter is able to capture the fainter visible and ultraviolet light coming from the solar corona. Its high-resolution images show the detailed structure and movement within the corona, revealing how solar wind motion already becomes turbulent at its roots.
The red-tinted ring in the video shows Metis observations made on 12 October 2022. At the time, the spacecraft was just 43.4 million km from the Sun, less than a third of the Sun–Earth distance. The video of the Sun in the centre of the video was recorded by Solar Orbiter’s Extreme Ultraviolet Imager (EUI) on the same day. (Read more about Solar Orbiter’s instruments here.)
“This new analysis provides the first-ever evidence for the onset of fully developed turbulence in the Sun’s corona. Solar Orbiter’s Metis coronagraph was able to detect it very close to the Sun, closer than any spacecraft could approach the Sun and make local measurements,” explains Daniel Müller, ESA’s Solar Orbiter Project Scientist.
Turbulence affects how solar wind is heated, how it moves through the Solar System and how it interacts with the magnetic fields of planets and moons it passes through. Understanding solar wind turbulence is crucial for predicting space weather and its effects on Earth.
‘Metis observation of the onset of fully developed turbulence in the solar corona’ by Daniele Telloni et al. was published today in Astrophysical Journal Letters.
[Video description: The Sun is shown in the centre, surrounded by a ring of data from Solar Orbiter’s Metis coronagraph. The data show changes in brightness of the solar corona, which directly relates to the density of charged particles. These changes are made visible by subtracting consecutive coronal brightness images taken two minutes apart. Red regions show no change, while white and black regions highlight positive and negative changes in brightness. This reveals how charged solar wind particles within the corona move in a chaotic, turbulent way. The video repeats three times.]
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.