Jump to content

Langley Celebrates Women’s History Month: The Langley ASIA-AQ Team


Recommended Posts

  • Publishers
Posted

13 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

In honor of Women’s History Month, we caught up with the ASIA-AQ team on the other side of the Earth and asked the women from Langley about their inspirations and challenges as scientists.

The ASIA-AQ (Airborne and Satellite Investigation of Asian Air Quality) mission is an international cooperative field study designed to address local air quality challenges. ASIA-AQ will contribute to improving the integration of satellite observations with existing air quality ground monitoring and modeling efforts across Asia.

picture1-574b29.jpg?w=1430
Langley’s Angelique Demetillo, center, in her flight suit after a flight in the Philippines for the ASIA-AQ mission along with mission partners from the Philippine Department of Environment and Natural Resources (DENR) and Manila Observatory.
NASA/Kevin Rohr

Mary Angelique G. Demetillo, Ph.D., NASA Post-doctoral Program Fellow and instrument operator on board Langley’s G-III aircraft, operates the GeoCAPE Airborne Spectrometer (GCAS) remote sensor.

What do you do at Langley? 

I focus on using high-resolution remote-sensing measurements to study air pollution inequality in cities. Currently, I am using airborne LIDAR measurements to understand lower tropospheric ozone variability over Houston, Texas. 

As a child, what did you want to do when you grew up? 

I just wanted to be helpful–at first, I wanted to be a teacher and then a doctor and then a biomedical engineer. Then, I found atmospheric chemistry research and discovered I could combine the knowledge I learned in the classroom to 1) work with scientific instruments that could measure the unseen, 2) to understand the world around me, and 3) provide policy-useful information towards addressing air pollution inequality.

Are there obstacles you have had to overcome to be successful

Hmmmm, this is a hard one. I think I was very lucky to have access to good education and food and housing security so I could focus on my studies such that any obstacles I encountered really ended up being stepping-stones in my development as a scientist. Growing up in America under immigrant parents, it was tricky navigating the reconciliation of two very different cultural and generational perspectives. The largest impact of this dichotomy was that it wasn’t common for first-generation Filipina-Americans to be anything other than nurses or in the medical field. As such, I didn’t really know being a scientist was an accessible career to me and was even actively discouraged to pursue it. But I’m glad I did, and still am, and feel incredibly lucky to be able to do great work with awesome people while navigating this pipeline.

Were you treated differently as a woman in a science field? 

I may have been and didn’t recognize it since I was very shy and quiet. However, I did realize being confident in my abilities and knowledge and speaking up for myself and others were critical to participating and succeeding in male-dominated fields like physics and atmospheric science.

Who were your mentors growing up? Who are your mentors now?

I have been incredibly lucky to come across many people from whom I learned different things and looked up to in different ways. Most notably however, were my elementary school computer teacher, my 5th grade science teacher, my graduate school advisor, and my current postdoc advisor! Each of them were/are critical to developing my self-confidence as a scientist and person. 

What’s the best part of your job? 

It’s hard to pick! You can’t beat the work –getting to fly and work closely with the instrument/measurement teams whose data I use for my research; collaboration across cultures and expertise on field campaigns; and exercising scientific precision, accuracy, and creativity for data-driven, policy-relevant solutions is a surreal job to have. But since I’m still building my career, I would really have to say the people are the best part—from speaking with experienced scientists, mechanics, engineers, and project managers to growing alongside the next-generation atmospheric chemists as we shape our contribution to the field as individuals and cohort, makes the work even more fun and exciting.

Why does science matter to you? 

Science matters to me because it served as a platform through which I could understand the world around me. As I grow more in this field, I am also learning science truly requires collaboration. Science can serve as a testbed for new solutions and innovations while bridging the gap between language, culture, and backgrounds. And with increasing interdisciplinary science, it will not only challenge our ability to connect different perspectives of information together, but also strengthen our connections to each other.

picture2-c032b6.jpg?w=1430
Langley’s Francesco Gallo in front of NASA Armstrong’s DC-8 aircraft in South Korea during ASIA-AQ.
NASA/Eddie Winstead

Francesco Gallo, Ph.D., research scientist, operates Langley Aerosol Research Group (LARGE) instruments on board Armstrong’s DC-8 aircraft for ASIA-AQ.

What do you do at Langley?

I do a lot of data analysis of aerosol datasets from previous and current NASA campaigns.

Are there obstacles you have had to overcome to be successful? 

I’ve always been very much supported by my family and mentors. Being a foreign national has been often an obstacle. Luckily, becoming a lawful permanent resident last year has helped things improve. 

Were you treated differently as a woman in a science field?

No.

What’s the best part of your job?

Thinking I can somehow support the understanding of climate change for better environmental justice.

picture3-59c91d.jpg?w=468
Langley’s Carolyn Jordan with the LARGE instrument panel she operates on NASA Armstrong’s DC-8 aircraft at Clark Air Base, Philippines.
NASA/Eddie Winstead

Carolyn Jordan, Ph.D., research scientist senior, is a member of the Langley Aerosol Research Group (LARGE). For ASIA-AQ, Jordan operates a rack on Armstrong’s DC-8 that measures aerosol properties and is developing a new measurement called the Spectral Aerosol Light Absorption Detector (SALAD).

What do you do at Langley?

Primarily, I am a data analyst with LARGE working up various data sets and writing papers focused on our aerosol measurements.  I also work in the lab with other members of our group.  We have developed two new ground-based measurement capabilities for spectral extinction (SpEx) and absorption.  We are now transitioning those methods to enable them to be used from airborne platforms.

As a child, what did you want to do when you grew up?

I wanted to be an astronaut and even wrote to NASA as a young teenager (13-14 or so) to ask what one had to do to become one.  They didn’t tell me, but they did send me a lovely photograph of Saturn!

Are there obstacles you have had to overcome to be successful?

I grew up in a tiny farm town in rural Wisconsin, but I was very fortunate to be surrounded by people who didn’t think it was crazy to want to be an astronaut.  I was also extremely fortunate to have excellent teachers in high school and college who were supportive and helpful when I questioned whether I could manage the material as a physics major.  I was lucky my obstacles were few, and I have been very fortunate in the opportunities that came my way.

Were you treated differently as a woman in a science field?

Sometimes.  The important thing is even in the 1980s (my college, grad school, and early career years), those who did so were considered to be out of line, so I never paid much attention to those who treated me as if I didn’t belong.

Who were your mentors growing up? Who are your mentors now?

My high school teachers Dr. Neil C. Goodspeed, Mrs. Peggy Johnson, Mr. Ted Moskonas, and Ms. Pam Wilson, my college professors Dr. Dino Zei, Dr. Wayne Broshar, and Dr. Mary Williams-Norton.  At this point in my career I don’t have mentors so much as excellent colleagues from whom I continue to learn a great deal.

What’s the best part of your job?

I have great colleagues and interesting research.  Even after all these years, I still have a great time doing the work that I do.  The most interesting thing for me is to look at the data.  One always finds something interesting and often something unexpected.  Working to understand what is there is the most fun for me.

Why does science matter to you?

Science is how we learn things.  It’s how we identify solutions to problems.  But there is also something to be said for expanding our knowledge of the universe we live in for its own sake.

What’s next?

I don’t know, we’ll see where the data tells us to look.

picture4-910322.jpg?w=1527
Langley’s Laura Judd and Barry Lefer from NASA HQ after a science flight at Clark Air Base, Philippines.
NASA/Barry Lefer

Laura Judd, Ph.D., research physical scientist and platform scientist for Langley’s G-III aircraft on ASIA-AQ.

What do you do on the ASIA-AQ mission?

I lead science flight planning and execution with our remote sensing payload and instrument and aircraft teams.  In the field, I spend my days working with the forecasting team to identify flight opportunities and real-time decision-making during science flights. I also continue my role I did as an instrument team member, which includes data processing and analysis with high resolution maps of nitrogen dioxide and formaldehyde from one of our satellite proxy instruments.  

What do you do at Langley?

I think my job fits largely three roles: (1) I contribute to planning of upcoming field studies This year it’s been STAQS (Synergistic TEMPO Air Quality Science) and ASIA-AQ. (2) I use data collected from those field studies to research spatial and temporal changes in pollution over major cities from satellites, aircraft, and ground-based data.  This also includes validating satellite products and collaborating with other researchers using our data for topics such as model evaluation and air quality event analysis, etc. (3) I also am an associate program manager for the Health and Air Quality area in Earth Action.  This comes with managing a portfolio of air quality projects that are integrating NASA datasets within decision making frameworks for stakeholders in air quality management and the public health sector. 

As a child, what did you want to do when you grew up?

I always wanted to study the weather.  This came from growing up in Nebraska and constantly being bombarded with dramatic shifts in day-to-day weather, including severe storms. This is typical of most meteorology colleagues I have met.  Going in the air pollution direction didn’t come until I graduated with my degree in meteorology through a NASA internship, but the weather is one of three major factors in why air pollution events unfold like they do from region-to-region (the other two being emissions and chemistry). 

Were you treated differently as a woman in a science field?

I have definitely encountered a subset of people who have not given me the respect due to being a woman throughout my career.  There are definitely instances where I am the only woman around, too, especially during field work. Luckily, I have been extremely fortunate to be overwhelmed with colleagues and mentors who do not treat me differently because I am a woman but rather see my potential and together make a good team.  

Who were your mentors growing up? Who are your mentors now?

Barry Lefer [NASA’s Tropospheric Composition Program Manager] has been a huge advocate for me and many other women as scientists.  While statistically there are less women in STEM, there is no way to balance it out in the future without advocates like him. He was my first mentor in doing airborne science as a student and continues to be at NASA.

What’s the best part of your job?

The best part of my job is being on the forefront of new science.  I get to work with some of the top experts in our field in the world and a lot of them I get to now call my friends. We are all learning together to come up with new ways to improve our understanding of air quality with the hope of seeing cleaner air in the future. You also can’t beat an office view from 28,000 feet during these sporadic missions!

Why does science matter to you?

The science we are doing directly affects our quality of life, especially for the millions living with poor air quality. I am also encouraged.  I am early in my career and have already seen positive changes in air quality happen in some regions.  I find that encouraging to keep going.  

What’s next?

For me, it’s to keep pushing bounds on what we can learn from combining new satellite, airborne, and ground-based air quality data. 

picture5.jpg?w=468
Langley’s Katie Travis on the flight line at Osan Airbase, South Korea. NASA’s DC-8 and G-III aircraft can be seen behind her along with a partner aircraft from the Korea Meteorological Administration.
NASA/Francesca Gallo

Katie Travis, Ph.D., research scientist, compares model forecast simulations with local air quality monitoring sites on the ASIA-AQ mission. Travis also performs quick evaluations of the aircraft data as it becomes available after each flight.

What do you do at Langley?

I work to put together all parts of the integrated observing system for air quality by interpreting satellite, aircraft, and ground-based data with models to improve our understanding of surface air quality and atmospheric composition.

As a child, what did you want to do when you grew up?

A journalist!

Are there obstacles you have had overcome to be successful? 

The main obstacle I have had to overcome is balancing having children with the demands of a scientific career.

Were you treated differently as a woman in a science field?

That is a difficult question to answer.  However, I can say that getting my bachelor’s degree in engineering from a women’s college (Smith College) gave me a wonderful start to working in science in a very supportive environment.

Who were your mentors growing up? Who are your mentors now?

I am very grateful for the wonderful community in the field of atmospheric chemistry and at NASA. It was a professor at Smith College, Paul Voss, who introduced me to air quality.  Now I am lucky to be part of the IMPAQT group (Integrating Multiple Perspectives of Air Quality Team) at NASA and be mentored by senior scientists as well as work with colleagues with a range of expertise in both air pollution and policy.

What’s the best part of your job?

The best part of my job is getting to learn something new every day and getting to explore questions about the world that I think are important.

Why does science matter to you?

Studying environmental issues, to me, means working to understand the impact human activities have on our environment so that we can protect it for future generations.

What’s next?

More science.

For more information on the ASIA-AQ mission and the Science Directorate at Langley:

https://www-air.larc.nasa.gov/missions/asia-aq/index.html

https://science.larc.nasa.gov/

https://science-data.larc.nasa.gov/large/

https://science.larc.nasa.gov/impaqt/

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Explore This Section Science Uncategorized NASA SCoPE Summer Symposium… Overview Learning Resources Science Activation Teams SME Map Opportunities More Science Activation Stories Citizen Science   4 min read
      NASA SCoPE Summer Symposium Celebrates Early Career Scientists and Cross-Team Collaboration
      From June 16–18, 2025, the NASA Science Mission Directorate Community of Practice for Education (SCoPE) Summer Symposium brought together a community of scientists, educators, and outreach professionals to celebrate and strengthen NASA’s commitment to developing its workforce and broadening participation in science.
      NASA SCoPE is a NASA-funded initiative at Arizona State University that connects early career scientists with NASA Science Activation (SciAct) program teams to build capacity in science communication, community engagement, and educational outreach. Through targeted support like Seed Grants, Travel Grants, and Mission Liaison opportunities, SCoPE equips scientists with the skills and networks needed to meaningfully engage the public with NASA science.
      Held in collaboration with key SciAct teams—including Infiniscope, Co-creating with Communities, NASA’s Community College Network, and NASA’s Universe of Learning—the 2025 symposium highlighted the incredible impact of SCoPE over the past four and a half years. The program has financially supported more than 100 early career scientists across a growing network of nearly 1,000 participants.
      Over the course of the three-day event, 23 awardees of SCoPE Seed Grants, Travel Grants, and Mission Liaison Grants came together to share their work, connect across disciplines, and explore new avenues for collaboration. Twelve Seed Grant awardees presented their projects, illustrating the transformative power of partnerships with SciAct teams. Highlights included learning how to write for young audiences through mentorship from NASA eClips in support of the children’s book ‘Blai and Zorg Explore the Moon’, designed for elementary learners; a collaborative effort between ‘Lost City, Icy Worlds’ and OpenSpace that evolved into long-term networking and visualization opportunities; and an Antarctic research project that, through collaboration with the Ocean Community Engagement and Awareness using NASA Earth Observations and Science (OCEANOS) project and Infiniscope, both expanded training opportunities for expedition guides and brought polar science to Puerto Rican high school summer interns.
      Beyond formal sessions, the symposium embraced community building through shared meals, informal networking, and hands-on experiences like a 3D planetarium show using OpenSpace software, a telescope demonstration with 30 high school students, and a screening of NASA’s Planetary Defenders documentary. Workshop topics addressed the real-world needs of early career professionals, including grant writing, logic model development, and communicating with the media.
      Survey responses revealed that 95% of attendees left with a stronger sense of belonging to a community of scientists engaged in outreach. Participants reported making valuable new connections—with peers, mentors, and potential collaborators—and left inspired to try new approaches in their own work, from social media storytelling to designing outreach for hospital patients or other specialized audiences.
      As one participant put it, “Seeing others so passionate about Science Communication inspired me to continue doing it in different ways… it feels like the start of a new wave.” Another attendee remarked, “I want to thank the entire team for SCoPE to even exist. It is an incredible team/program/resource and I can’t even imagine the amount of work, dedication and pure passion that has gone into this entire project over the years. Although I only found SCoPE very recently, I feel like it has been incredibly helpful in my scientific journey and I only wish I had learned of the program sooner. Thank you to the entire team for what was a truly educational and inspirational workshop, and the wonderful community that SCoPE has fostered.”
      This successful event was made possible through the dedication of NASA SciAct collaborators and the leadership of SciAct Program Manager Lin Chambers, whose continued support of early career engagement through SCoPE has created a growing, connected community of science communicators. The SCoPE Summer Symposium exemplifies how cross-team collaboration and community-centered design can effectively amplify the reach of NASA science.
      Learn more about how NASA’s Science Activation program connects NASA science experts, real content, and experiences with community leaders to do science in ways that activate minds and promote deeper understanding of our world and beyond: https://science.nasa.gov/learn/about-science-activation/
      SCoPE-funded scientists and collaborators gather at the 2025 SCoPE Summer Symposium to celebrate program success, share ideas, build partnerships, and advance science communication and education efforts across NASA’s Science Activation program. Share








      Details
      Last Updated Jul 15, 2025 Editor NASA Science Editorial Team Related Terms
      Opportunities For Educators to Get Involved Science Activation Science Mission Directorate Explore More
      4 min read Linking Satellite Data and Community Knowledge to Advance Alaskan Snow Science


      Article


      1 day ago
      2 min read Hubble Snaps Galaxy Cluster’s Portrait


      Article


      4 days ago
      7 min read NASA’s Parker Solar Probe Snaps Closest-Ever Images to Sun
      On its record-breaking pass by the Sun late last year, NASA’s Parker Solar Probe captured…


      Article


      5 days ago
      Keep Exploring Discover More Topics From NASA
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Perseverance Rover


      This rover and its aerial sidekick were assigned to study the geology of Mars and seek signs of ancient microbial…


      Parker Solar Probe


      On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona…


      Juno


      NASA’s Juno spacecraft entered orbit around Jupiter in 2016, the first explorer to peer below the planet’s dense clouds to…

      View the full article
    • By Space Force
      Colorado Springs is playing host to the DOD Warrior Games July 18-26, and for the first time, Guardians are among the nearly 200 wounded, ill and injured athletes competing in 11 adaptive sports over nine days.

      View the full article
    • By NASA
      On June 14 and 16, technicians installed solar panels onto NASA’s Nancy Grace Roman Space Telescope, one of the final steps in assembling the observatory. Collectively called the Solar Array Sun Shield, these panels will power and shade the observatory, enabling all the mission’s observations and helping keep the instruments cool.
      In this photo, technicians install solar panels onto the outer portion of NASA’s Nancy Grace Roman Space Telescope. Roman’s inner portion is in the background just left of center. By the end of the year, technicians plan to connect the two halves and complete the Roman observatory. Credit: NASA/Sydney Rohde “At this point, the observatory is about 90% complete,” said Jack Marshall, the Solar Array Sun Shield lead at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “We just need to join two large assemblies, and then we’ll run the whole Roman observatory through a series of tests. We’re currently on track for launch several months earlier than the promised date of no later than May 2027.” The team is working toward launch as early as fall 2026.
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      Over the course of two days, eight technicians installed Roman's solar panels onto the outer portion of NASA's Nancy Grace Roman Space Telescope. Each of the six panels is about 23 by 33 feet (7 by 10 meters), fitted with photovoltaic cells which will harness energy from sunlight to power the observatory. The solar panels were designed, built, and installed at NASA's Goddard Space Flight Center in Greenbelt, Md.Credit: NASA/Sophia Roberts The Solar Array Sun Shield is made up of six panels, each covered in solar cells. The two central panels will remain fixed to the outer barrel assembly (the observatory’s outer shell) while the other four will deploy once Roman is in space, swinging up to align with the center panels.
      The panels will spend the entirety of the mission facing the Sun to provide a steady supply of power to the observatory’s electronics. This orientation will also shade much of the observatory and help keep the instruments cool, which is critical for an infrared observatory. Since infrared light is detectable as heat, excess warmth from the spacecraft’s own components would saturate the detectors and effectively blind the telescope.
      The solar panels on NASA’s Nancy Grace Roman Space Telescope are covered in a total of 3,902 solar cells that will convert sunlight directly into electricity much like plants convert sunlight to chemical energy. When tiny bits of light, called photons, strike the cells, some of their energy transfers to electrons within the material. This jolt excites the electrons, which start moving more or jump to higher energy levels. In a solar cell, excited electrons create electricity by breaking free and moving through a circuit, sort of like water flowing through a pipe. The panels are designed to channel that energy to power the observatory.Credit: NASA/Sydney Rohde “Now that the panels have been installed, the outer portion of the Roman observatory is complete,” said Goddard’s Aaron Vigil, a mechanical engineer working on the array. Next, technicians will test deploy the solar panels and the observatory’s “visor” (the deployable aperture cover). The team is also testing the core portion of the observatory, assessing the electronics and conducting a thermal vacuum test to ensure the system operates as planned in the harsh space environment.
      This will keep the project on track to connect Roman’s inner and outer segments in November, resulting in a whole observatory by the end of the year that can then undergo pre-launch tests.
      Now that the solar panels are installed on the outer portion of NASA’s Nancy Grace Roman Space Telescope, technicians are readying the assembly for vibration testing to ensure it will withstand the extreme shaking experienced during launch.Credit: NASA/Sydney Rohde To virtually tour an interactive version of the telescope, visit: https://roman.gsfc.nasa.gov/interactive/
      Download high-resolution video and images from NASA’s Scientific Visualization Studio
      The Nancy Grace Roman Space Telescope is managed at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, with participation by NASA’s Jet Propulsion Laboratory in Southern California; Caltech/IPAC in Pasadena, California; the Space Telescope Science Institute in Baltimore; and a science team comprising scientists from various research institutions. The primary industrial partners are BAE Systems Inc. in Boulder, Colorado; L3Harris Technologies in Rochester, New York; and Teledyne Scientific & Imaging in Thousand Oaks, California.
      By Ashley Balzer
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Share
      Details
      Last Updated Jul 10, 2025 EditorAshley BalzerContactAshley Balzerashley.m.balzer@nasa.govLocationGoddard Space Flight Center Related Terms
      Nancy Grace Roman Space Telescope Dark Energy Dark Matter Goddard Space Flight Center Goddard Technology NASA Centers & Facilities Technology The Universe Explore More
      6 min read NASA’s Roman Mission Shares Detailed Plans to Scour Skies
      Article 3 months ago 4 min read Core Components for NASA’s Roman Space Telescope Pass Major Shake Test
      Article 1 month ago 6 min read Team Preps to Study Dark Energy via Exploding Stars With NASA’s Roman
      Article 4 months ago View the full article
    • By NASA
      Explore This Section Perseverance Home Mission Overview Rover Components Mars Rock Samples Where is Perseverance? Ingenuity Mars Helicopter Mission Updates Science Overview Objectives Instruments Highlights Exploration Goals News and Features Multimedia Perseverance Raw Images Images Videos Audio More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions Mars Home 3 min read
      An Update From the 2025 Mars 2020 Science Team Meeting
      A behind-the-scenes look at the annual Mars 2020 Science Team Meeting
      Members of the Mars 2020 Science Team examine post-impact sediments within the Gardnos impact structure, northwest of Oslo, Norway, as part of the June 2025 Science Team Meeting. NASA/Katie Stack Morgan Written by Katie Stack Morgan, Mars 2020 Acting Project Scientist 
      The Mars 2020 Science Team gathered for a week in June to discuss recent science results, synthesize earlier mission observations, and discuss future plans for continued exploration of Jezero’s crater rim. It was also an opportunity to celebrate what makes this mission so special: one of the most capable and sophisticated science missions ever sent to Mars, an experienced and expert Science Team, and the rover’s many science accomplishments this past year.  
      We kicked off the meeting, which was hosted by our colleagues on the RIMFAX team at the University of Oslo, with a focus on our most recent discoveries on the Jezero crater rim. A highlight was the team’s in-depth discussion of spherules observed at Witch Hazel Hill, features which likely provide us the best chance of determining the origin of the crater rim rock sequence.   
      On the second day, we heard status updates from each of the science instrument teams. We then transitioned to a session devoted to “traverse-scale” syntheses. After 4.5 years of Perseverance on Mars and more than 37 kilometers of driving (more than 23 miles), we’re now able to analyze and integrate science datasets across the entire surface mission, looking for trends through space and time within the Jezero rock record. Our team also held a poster session, which was a great opportunity for in-person and informal scientific discussion.  
      The team’s modern atmospheric and environmental investigations were front and center on Day 3. We then rewound the clock, hearing new and updated analyses of data acquired during Perseverance’s earlier campaigns in Jezero’s Margin unit, crater floor, and western fan. The last day of the meeting was focused entirely on future plans for the Perseverance rover, including a discussion of our exploration and sampling strategy during the Crater Rim Campaign. We also looked further afield, considering where the rover might explore over the next few years.  
      Following the meeting, the Science Team took a one-day field trip to visit Gardnos crater, a heavily eroded impact crater with excellent examples of impact melt breccia and post-impact sediment fill. The team’s visit to Gardnos offered a unique opportunity to see and study impact-generated rock units like those expected on the Jezero crater rim and to discuss the challenges we have recognizing similar units with the rover on Mars. Recapping our Perseverance team meetings has been one of my favorite yearly traditions (see summaries from our 2022, 2023, and 2024 meetings) and I look forward to reporting back a year from now. As the Perseverance team tackles challenges in the year to come, we can seek inspiration from one of Norway’s greatest polar explorers, Fridtjof Nansen, who said while delivering his Nobel lecture, “The difficult is that which can be done at once; the impossible is that which takes a little longer.”
      Share








      Details
      Last Updated Jul 01, 2025 Related Terms
      Blogs Explore More
      2 min read Curiosity Blog, Sols 4584–4585: Just a Small Bump


      Article


      1 hour ago
      4 min read Curiosity Blog, Sols 4582-4583: A Rock and a Sand Patch


      Article


      3 days ago
      2 min read Curiosity Blog, Sols 4580-4581: Something in the Air…


      Article


      5 days ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
    • By NASA
      The NASA Ames Science Directorate recognizes the outstanding contributions of (pictured left to right) Sigrid Reinsch, Lori Munar, Kevin Sims, and Matthew Fladeland. Their commitment to the NASA mission represents the entrepreneurial spirit, technical expertise, and collaborative disposition needed to explore this world and beyond.
      Space Biosciences Star: Sigrid Reinsch
      As Director of the SHINE (Space Health Impacts for the NASA Experience) program and Project Scientist for NBISC (NASA Biological Institutional Scientific Collection), Sigrid Reinsch is a high-performing scientist and outstanding mentor in the Space Biosciences Research Branch. Her dedication to student training and her efforts to streamline processes have significantly improved the experience of welcoming summer interns at NASA Ames.

      Space Science and Astrobiology Star: Lori Munar
      Lori Munar serves as the assistant Branch Chief of the Exobiology Branch. In the past few months, she has gone above and beyond to organize a facility and laboratory surplus event that involved multiple divisions over multiple days. The event resulted in considerable savings across the groups involved and improved the safety of N239 staff and the appearance of offices and labs.
      Space Science and Astrobiology Star: Kevin Sims
      Kevin Sims is a NASA Technical Project Manager serving the Astrophysics Branch as a member of the Flight Systems Implementation Branch in the Space Biosciences Division. Kevin is recognized for outstanding project management for exoplanet imaging instrumentation development in support of the Habitable Worlds Observatory. Kevin has streamlined, organized, and improved the efficiency of the Ames Photonics Testbed being developed as part the AstroPIC Early Career Initiative project.
      Earth Science Star: Matthew Fladeland
      Matthew Fladeland is a research scientist in the Earth Science Division managing NASA SMD’s Program Office for the Airborne Science Program, located at Ames. He is recognized for exemplary leadership and teamwork leading to new reimbursable agreements with the Department of Defense, for accelerating science technology solutions through the SBIR program, and for advancing partnerships with the US Forest Service on wildland ecology and fire science.
      View the full article
  • Check out these Videos

×
×
  • Create New...