Members Can Post Anonymously On This Site
SOHO reaches 5000 comets
-
Similar Topics
-
By NASA
2 min read
Hubble Reaches a Lonely Light in the Dark
NASA, ESA, C. Gallart (Instituto de Astrofisica de Canarias), A. del Pino Molina (Centro de Estudios de Fisica del Cosmos de Aragon), and R. van der Marel (Space Telescope Science Institute); Image Processing: Gladys Kober (NASA/Catholic University of America) A splatter of stars glows faintly at almost 3 million light-years away in this new image from NASA’s Hubble Space Telescope. Known as the Tucana Dwarf for lying in the constellation Tucana, this dwarf galaxy contains a loose bundle of aging stars at the far edge of the Local Group, an aggregation of galaxies including our Milky Way, bound together by gravity. The Tucana Dwarf was discovered in 1990 by R.J. Lavery, the same year Hubble launched.
What makes the Tucana Dwarf distinct from other dwarf galaxies comes in two parts: its classification, and its isolation. As a dwarf spheroidal galaxy, it is much smaller and less luminous than most other dwarf galaxies. Dust is sparse and the stellar population skews towards the older range, giving them a dimmer look. Additionally, the Tucana Dwarf lies about 3.6 million light-years from the Local Group’s center of mass, far from the Milky Way and other galaxies. It is only one of two dwarf spheroidal galaxies in the Local Group to be this remote, making astronomers theorize that a close encounter with a larger galactic neighbor called Andromeda slingshotted it into the distance about 11 billion years ago.
Having such pristine properties enables scientists to use the Tucana Dwarf as a cosmic fossil. Dwarf galaxies could be the early ingredients for larger galaxies, and with older stars residing in such an isolated environment, analyzing them can help trace galaxy formation back to the dawn of time. For that reason, Hubble reached far across the Local Group using the capabilities of the Advanced Camera for Surveys and Wide Field and Planetary Camera 2 to meet this distant, lonely galaxy. Examining its structure, composition, and star formation history sheds light on the epoch of reionization, when the first stars and galaxies arose from the dark billions of years ago.
Download Image
Explore More
Hubble’s Galaxies
Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contact:
Claire Andreoli
NASA’s Goddard Space Flight Center, Greenbelt, MD
claire.andreoli@nasa.gov
Share
Details
Last Updated Aug 23, 2024 Editor Michelle Belleville Location NASA Goddard Space Flight Center Related Terms
Astrophysics Galaxies Goddard Space Flight Center Hubble Space Telescope Stars Keep Exploring Discover More Topics From NASA
Hubble Space Telescope
Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.
Hubble Science
Hubble’s Galaxies
Stars
View the full article
-
By European Space Agency
ESA’s Earth Return Orbiter, the first spacecraft that will rendezvous and capture an object around another planet, passed a key milestone to bring the first Mars samples back to Earth.
View the full article
-
By NASA
On March 3, 1959, the United States launched Pioneer 4 with the goal of photographing the Moon during a close flyby. As part of the International Geophysical Year that ran from July 1, 1957, to Dec. 31, 1958, the United States planned to send five probes to study the Moon. The first three planned to orbit the Moon, while the last two simpler probes planned to photograph it during flybys. After NASA opened for business in October 1958, the new space agency inherited the Pioneer program from the Advanced Research Projects Agency, a branch of the Department of Defense established earlier in 1958 as part of America’s initiative to respond to early Soviet space accomplishments. The Jet Propulsion Laboratory in Pasadena, California, part of the U.S. Army until transferred to NASA in December 1958, built the two Pioneer lunar flyby spacecraft. While the first four missions did not succeed in reaching their target, Pioneer 4 became the first American spacecraft to flyby the Moon and enter solar orbit.
Left: A replica of the Pioneer 1 spacecraft. Image credit: courtesy National Air and Space Museum. Right: Liftoff of Pioneer 1, the first satellite launched by NASA.
The first Pioneer launch attempt on August 17, 1958, ended in failure 77 seconds after liftoff when the Thor-Able booster exploded. Engineers identified and corrected the problem with the rocket and on Oct. 11, Pioneer 1, weighing 84 pounds, thundered off from Cape Canaveral’s Launch Complex 17A. The launch took place just 10 days after NASA officially opened for business. Liftoff seemed to go well, but tracking soon showed that the spacecraft was traveling more slowly than expected and was also off course. Relatively minor errors in the first stage’s performance were compounded by other issues with the second stage, making it clear that Pioneer 1 would not achieve its primary goal of entering orbit around the Moon. The spacecraft did reach a then-record altitude of 70,770 miles about 21 hours after launch before beginning its fall back to Earth. It burned up on reentry over the Pacific Ocean 43 hours after liftoff. The probe’s instruments confirmed the existence of the Van Allen radiation belts discovered by Explorer 1 earlier in the year. The third and final lunar orbiter attempt, Pioneer 2 on November 8, met with less success. The rocket’s first and second stages performed well, but the third stage failed to ignite. Pioneer 2 could not achieve orbital velocity and only reached a peak altitude of 960 miles before falling back to Earth after a brief 42-minute flight.
Left: Juno rocket developer Wernher von Braun, left, Pioneer project engineer John R. Casani, and project scientist James A. Van Allen inspect the instruments in the Pioneer 4 spacecraft. Image credit: courtesy LIFE Magazine. Middle: Kurt H. Debus, left, and von Braun in the blockhouse for the Pioneer 4 launch. Right: Launch of Pioneer 4, the first American spacecraft to flyby the Moon and enter solar orbit.
The two lunar flyby missions came next, each carrying a radiation counter and photographic equipment. The 13-pound Pioneer 3 took off on Dec. 6. The Juno-II rocket’s first stage engine cut off early, and the probe could not reach its destination, falling back to Earth 38 hours after launch. Despite this problem, Pioneer 3 returned significant radiation data and discovered a second outer Van Allen belt encircling the Earth. The second attempt on March 3, 1959, met with more success as Pioneer 4 became the first American spacecraft to reach Earth escape velocity. The Juno-II’s second stage burned for an extra few seconds, resulting in Pioneer 4 passing at 36,650 miles of the Moon’s surface 41 hours after launch. At that distance, instead of the planned 5,000 miles, the spacecraft could not achieve its objective of photographing the Moon. Pioneer 4 then went on to become the first American spacecraft to enter solar orbit, a feat the Soviet Luna 1 accomplished two months earlier. Pioneer 4 returned radiation data for 82 hours, out to 409,000 miles, nearly twice the Earth-Moon distance, until its batteries died.
Left: Pioneer 4’s trajectory to the Moon and beyond. Right: The Deep Space Station-11, also known as Pioneer Station, in 1958.
Although these early Pioneer lunar probes met with limited mission success, the program marked the first use of the 26-meter antenna and tracking station at Goldstone, California. This antenna, completed in 1958 and known as Deep Space Station 11 (DSS-11), was the first component of what eventually became the NASA Deep Space Network. Although called Pioneer Station, DSS-11 not only followed these early spacecraft, starting with Pioneer 3, but later monitored the Ranger, Surveyor, and Lunar Orbiter robotic precursor missions and tracked the Apollo 11 Lunar Module Eagle to the Moon’s surface on July 20, 1969, and the other Apollo lunar missions as well. It also tracked Mariner, Viking, and Voyager missions to the planets before its decommissioning in 1978.
Watch a video about Pioneer 4: https://youtu.be/mM4U78sFYpQ
Explore More
22 min read Women’s History Month: Celebrating Women Astronauts 2024
Article 3 days ago 4 min read NASA Center Boosted YF-12 Supersonic Engine Research
Article 2 weeks ago 11 min read 55 Years Ago: Five Months Until the Moon Landing
Article 2 weeks ago View the full article
-
By NASA
FAIRMONT – Competitive Robotics in West Virginia has reached an all-time high with more teams across the state than ever before.
The West Virginia Robotics Alliance, managed by the Education Resource Center (ERC) team at the NASA Katherine Johnson IV&V Facility, released new data for the 2023-24 Robotics Season that shows a peak in the number of teams and steady growth over the last several years.
Number of Robotics Teams in WV “The ERC assumed management of the FIRST LEGO League tournament in 2011 when we had barely 50 teams in West Virginia,” ERC Program Manager Dr. Todd Ensign said. “Today, there are over 550 teams that engage approximately 3,000 students almost daily!”
According to the data, the overall number of robotics teams in the state has risen every year since 2011 – with one exception during the 2020-21 season when the COVID-19 pandemic impacted participation.
The ERC now runs qualifying events every weekend, numerous state championships, invitational tournaments, and international competitions. Ensign and many other figures within the ERC and Robotics Alliance have championed robotics events and opportunities for students across the state, including in some of its most rural communities, to help reach this point.
“This is indeed an achievement on behalf of the students, coaches, parents, schools and districts who are supporting competitive robotics,” Ensign said.
With such exponential growth, Ensign says more volunteers are needed to support current and future events. Positions are available for people of all ages and levels of prior experience. To learn more about how to volunteer, visit https://www.wvrobot.org/volunteer.
A major development in West Virginia’s robotics landscape came in 2021 when the West Virginia Secondary Schools Activities Commission (WVSSAC) recognized robotics as a co-curricular activity. This update made it possible for students to receive a varsity letter in robotics, gaining recognition similar to those earned in marching band or other sports.
When the WVSSAC recognition was announced, many at the ERC had high hopes for what it would mean to further STEM and robotics in West Virginia.
“We hope recognition from the WVSSAC will increase the number of schools throughout West Virginia participating in competitive robotics,” John Holbrook, of the ERC, said at the time. “Ultimately, our goal is to see robotics teams from every county of West Virginia.”
And with the new milestone reached in participation, those goals are closer than ever before. Many events are upcoming as the 2023-24 robotics season continues, including what is set to be the largest VEX State Championship in West Virginia history, March 10-16, at the Fairmont State University Falcon Center and the WVSSAC Robotics State Championship, April 6, at Herbert Hoover High School, in Elkview, West Virginia.
For a full list of upcoming events: WV Robotics Alliance – Upcoming Events
View the full article
-
By NASA
The first crew to take part in a yearlong NASA Mars analog mission reached a milestone of 100 days inside the 1,700-square-foot habitat on October 3.
The four person, volunteer crew entered the CHAPEA (Crew Health and Performance Exploration Analog) habitat at NASA’s Johnson Space center in Houston on June 25 to begin a 378-day Mars surface simulation.
Throughout their mission, the crew is carrying out different types of mission activities future astronauts will take part in during a human Mars mission, including simulated spacewalks, robotic operations, habitat maintenance, personal hygiene, exercise, and crop growth.
While the CHAPEA crew is also simulating Mars-realistic communication delay of up to 22-minutes one-way, they have periodically captured and shared images of their experience.
Nathan Jones, CHAPEA mission 1 medical officer, gives Anca Selariu, CHAPEA mission 1 science officer, the first haircut inside the simulated Mars habitat.NASA/CHAPEA crew Nathan Jones participates in a simulated “Marswalk” inside the 1,200 square foot sandbox, which is connected to the habitat through an airlock.NASA/CHAPEA crew CHAPEA crew members Ross Brockwell and Anca Selariu complete geology work using the glovebox inside the habitat.NASA/CHAPEA crew NASA is leading a return to the Moon for long-term science and exploration. Through Artemis missions, NASA will land the first woman and first person of color on the Moon, using innovative technologies to explore more of the lunar surface than ever before. Lessons learned on and around the Moon and activities like CHAPEA on the ground will prepare NASA for the next giant leap: sending astronauts to Mars.
Explore More
3 min read NASA Mars Analog Crew to Test Food Systems, Crop Growth
Article 3 months ago 1 min read First CHAPEA Crew Begins 378-Day Mission
Article 3 months ago 5 min read NASA Selects Participants for One-Year Mars Analog Mission
Article 3 months ago View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.