Jump to content

Recommended Posts

Posted
low_STSCI-H-p0421a-k-1340x520.png

Like a photographer clicking random snapshots of a crowd of people, NASA's Hubble Space Telescope has taken a view of an eclectic mix of galaxies. In taking this picture, Hubble's Advanced Camera for Surveys was not looking at any particular target. The camera was taking a picture of a typical patch of sky, while Hubble's infrared camera was viewing a target in an adjacent galaxy-rich region. The most peculiar-looking galaxy in the image - the dramatic blue arc in the center - is actually an optical illusion. The blue arc is an image of a distant galaxy that has been smeared into the odd shape by a phenomenon called gravitational lensing.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      NASA NASA astronaut Alan Bean steps off the lunar module ladder in this photo from Nov. 19, 1969, joining astronaut Charles Conrad Jr. on the Moon in the area called the Ocean of Storms. The two would then complete two spacewalks on the lunar surface, deploying science instruments, collecting geology samples, and inspecting the Surveyor 3 spacecraft, which had landed in the same area. While Bean and Conrad worked on the Moon, astronaut Richard F. Gordon completed science from lunar orbit.
      Learn more about Apollo 12’s pinpoint landing on the Moon.
      Image credit: NASA
      View the full article
    • By NASA
      Hubble Space Telescope Home Hubble Takes a Look at Tangled… Hubble Space Telescope Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts News Hubble News Hubble News Archive Social Media Media Resources Multimedia Multimedia Images Videos Sonifications Podcasts E-books Lithographs Fact Sheets Glossary Posters Hubble on the NASA App More Online Activities   2 min read
      Hubble Takes a Look at Tangled Galaxies
      This Hubble image features a pair of interacting spiral galaxies called MCG+05-31-045. ESA/Hubble & NASA, R. J. Foley (UC Santa Cruz)
      Download this image

      This NASA/ESA Hubble Space Telescope image depicts the cosmic tangle that is MCG+05-31-045, a pair of interacting galaxies located 390 million light-years away and a part of the Coma galaxy cluster.
      The Coma Cluster is a particularly rich cluster that contains over a thousand known galaxies. Amateur astronomers can easily spot several of these in a backyard telescope (See Caldwell 35). Most of them are elliptical galaxies, and that’s typical of a dense galaxy cluster like the Coma Cluster: many elliptical galaxies form through close encounters between galaxies that stir them up, or even collisions that rip them apart. While the stars in interacting galaxies can stay together, their gas is twisted and compressed by gravitational forces and rapidly used up to form new stars. When the hot, massive, blue stars die, there is little gas left to form new generations of young stars to replace them. As spiral galaxies interact, gravity disrupts the regular orbits that produce their striking spiral arms. Whether through mergers or simple near misses, the result is a galaxy almost devoid of gas, with aging stars orbiting in uncoordinated circles: an elliptical galaxy.
      It’s very likely that a similar fate will befall MCG+05-31-045. As the smaller spiral galaxy is torn up and integrated into the larger galaxy, many new stars will form, and the hot, blue ones will quickly burn out, leaving cooler, redder stars behind in an elliptical galaxy, much like others in the Coma Cluster. But this process won’t be complete for many millions of years.
      Explore more Coma Cluster images from Hubble.
      Hubble Uncovers Thousands of Globular Star Clusters Scattered Among Galaxies Hubble’s Galaxies With Knots, Bursts Hubble Sees Near and Far Hubble Sees Plunging Galaxy Losing Its Gas Hubble Catches Galaxies Swarmed by Star Clusters Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contact:
      Claire Andreoli
      NASA’s Goddard Space Flight Center, Greenbelt, MD
      claire.andreoli@nasa.gov
      Share








      Details
      Last Updated Nov 14, 2024 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms
      Astrophysics Astrophysics Division Hubble Space Telescope Spiral Galaxies Keep Exploring Discover More Topics From Hubble
      Hubble Space Telescope


      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


      Galaxy Details and Mergers



      Hubble’s Galaxies



      Explore the Night Sky


      View the full article
    • By NASA
      NASA has selected four new crew members to participate in the final simulated mission to Mars in 2024 inside the agency’s Human Exploration Research Analog. From left are Kristen Magas, Anderson Wilder, Obaid Alsuwaidi, and Tiffany Snyder.Credit: C7M4 Crew NASA selected a crew of four research volunteers to participate in its last simulated mission to Mars in 2024 within a habitat at the agency’s Johnson Space Center in Houston.
      Obaid Alsuwaidi, Kristen Magas, Tiffany Snyder, and Anderson Wilder will step into the 650-square-foot HERA (Human Exploration Research Analog) facility on Friday, Nov. 1. Once inside, the team will live and work like astronauts for 45 days. The crew will exit the facility on Monday, Dec. 16, after simulating their return to Earth. Jordan Hundley and Robert Wilson also were named as alternate crew members.
      Scientists use HERA studies to examine how crew members adapt to isolation, confinement, and remote conditions before NASA sends astronauts on deep space missions to the Moon, Mars, and beyond. The studies provide data about human health and performance in an enclosed environment over time with crews facing different challenges and tasks.
      The four volunteers will carry out scientific research and operational tasks throughout their simulated mission, including raising shrimp, growing vegetables, and “walking” on the surface of Mars using virtual reality. They will also experience communication delays lasting up to five minutes as they “near” Mars, allowing researchers to see how crews may respond to the type of delays astronauts will encounter in deep space. Astronauts traveling to the Red Planet may encounter one-way communication delays lasting as long as 20 minutes.
      As with the previous HERA missions, crew members will conduct 18 human health studies during the mission through NASA’s Human Research Program. Collectively, the work helps scientists understand how a spaceflight-like environment contributes to the physiological, behavioral, and psychological health of crew members. Insights gleaned from the studies will allow researchers to develop and test strategies aimed at helping astronauts overcome obstacles on deep space missions.
      Primary Crew
      Obaid Alsuwaidi
      Obaid Alsuwaidi serves as captain engineer for the United Arab Emirates’ (UAE) Ministry of Defense. In this role, he provides guidance in civil and marine engineering and addresses challenges facing the organization. Previously, Alsuwaidi worked as a project manager for the defense ministry, helping to streamline productivity, establish high standards of professionalism, and build a team of experts to serve the UAE’s needs.
      Alsuwaidi earned a bachelor’s degree in Engineering from Western Sydney University in Australia, followed by a master’s degree in Civil and Environmental Engineering from George Washington University in Washington.
      In his free time, Alsuwaidi enjoys horseback riding, swimming, and running.

      Kristen Magas
      Kristen Magas is an educator and engineer, currently teaching at Tri-County Regional Vocational Technical High School in Franklin, Massachusetts. She also mentors students involved in a NASA design and prototyping program, helping them develop and fabricate products to improve life in space on both International Space Station and Artemis missions. Magas was a finalist for the 2025 Massachusetts State Teacher of the Year.
      Magas received bachelor’s and master’s degrees in Civil and Environmental Engineering from Cornell University in Ithaca, New York. She also holds a master’s degree in Vocational Education from Westfield State University in Massachusetts. She has worked as a community college professor as well as a design engineer in municipal water and wastewater treatment.
      In her spare time, Magas enjoys coaching robotics and track and field, hiking, biking, and staying connected with her community. She has two children and resides in North Attleboro, Massachusetts with her husband of 25 years.

      Tiffany Snyder 
      Tiffany Snyder is a supervisor for the Cybersecurity Mission Integration Office at NASA, helping to ensure agency missions are shielded against cybersecurity threats. She has more than 20 years of information technology and cybersecurity experience, working with the Air National Guard and as a special agent with the Defense Counterintelligence Security Agency. She joined NASA in 2018 as an IT specialist, and later served as the deputy chief information security officer at NASA’s Kennedy Space Center in Florida, providing cybersecurity oversight.
      Snyder holds a bachelor’s degree in Earth Science from the State University of New York at Buffalo and a master’s degree in Digital Forensics from the University of Central Florida in Orlando.
      In her spare time, she enjoys playing with her dogs — Artemis and Apollo, gardening, running, and visiting the beach with her family.

      Anderson Wilder
      Anderson Wilder is a Florida Institute of Technology graduate student working on his doctorate in Psychology. His research focuses on team resiliency and human-machine interactions. He also works in the campus’s neuroscience lab, investigating how spaceflight contributes to neurobehavioral changes in astronauts.
      Wilder previously served as an executive officer and engineer for an analog mission at the Mars Desert Research Station in Utah. There, he performed studies related to crew social dynamics, plant growth, and geology.
      Wilder received his bachelor’s degrees in Linguistics and in Psychology from Ohio State University in Columbus. He also holds master’s degrees in Space Studies from International Space University in Strasbourg, France, and in Aviation Human Factors from the Florida Institute of Technology. He is completing another master’s degree in Cognitive Experimental Psychology at Cleveland State University in Ohio.
      Outside of school, Wilder works as a parabolic flight coach, teaching people how to fly in reduced gravity environments. He also enjoys chess, reading, video games, skydiving, and scuba diving. On a recent dive, he explored a submerged section of the Great Wall of China.
      Alternate Crew
      Jordan Hundley
      Jordan Hundley is a senior consultant at a professional services firm, offering federal agencies technical and programmatic support. Prior to his current position, he focused on U.S. Department of Defense clients, performing model-based system engineering and serving as a subject matter expert for related operations.
      Hundley was commissioned into the U.S. Air Force through the Reserve Officers’ Training Corps program at the University of Central Florida in Orlando. While on active duty, he served as an intercontinental ballistic missile operations officer. He later joined the U.S. Air Force Reserve. Currently, he is a space operations officer with experience in space battle management and electromagnetic warfare.
      Hundley earned a master’s degree in Engineering Management from Embry-Riddle Aeronautical University in Daytona Beach, Florida. He is currently pursuing a second master’s degree in Systems Engineering at the university.
      Hundley holds a private pilot license and is a certified rescue diver. In his spare time, he enjoys hiking and camping, researching theology, and learning musical instruments.

      Robert Wilson
      Robert Wilson is a senior researcher and project manager at the Johns Hopkins University Applied Physics Laboratory in Laurel, Maryland. He leads work enhancing human-machine collaborations, developing human prediction models, and integrating that technology into virtual reality and robotic systems designed to operate in isolated, constrained, and extreme environments. His human-machine teaming expertise also extends into responsible artificial intelligence development. He recently participated in a United Nations Roundtable discussion about artificial intelligence in security and defense.
      Wilson received his bachelor’s and master’s degrees in Biomedical Engineering from Purdue University in 2013 and 2015, respectively. He earned his doctorate in Mechanical Engineering from the University of Colorado Boulder in 2020.
      Outside of work, Wilson is an avid outdoors enthusiast. He enjoys scuba diving, winter camping, backcountry skiing, and hiking through the woods or mountains throughout the year. At home, he also likes to tinker in computer networking and self-hosted systems.
      ____
      NASA’s Human Research Program pursues the best methods and technologies to support safe, productive human space travel. Through science conducted in laboratories, ground-based analogs, commercial missions, and the International Space Station, the program scrutinizes how spaceflight affects human bodies and behaviors. Such research continues to drive NASA’s mission to innovate ways that keep astronauts healthy and mission-ready as human space exploration expands to the Moon, Mars, and beyond.
      For more information about human research at NASA, visit:
      https://www.nasa.gov/hrp
      Explore More
      4 min read NASA to Embrace Commercial Sector, Fly Out Legacy Relay Fleet 
      Article 2 days ago 2 min read Station Science Top News: Oct. 11, 2024
      Article 3 days ago 4 min read Spooky on the Space Station
      Article 3 days ago Keep Exploring Discover More Topics From NASA
      Living in Space
      Artemis
      Human Research Program
      Space Station Research and Technology
      View the full article
    • By European Space Agency
      Video: 00:03:27 On Saturday 5 and Sunday 6 October 2024, the European Space Agency opened the doors to the European Space Research and Technology Centre, ESTEC, in the Netherlands, welcoming some 9000 visitors to its 13th annual Open Day. As in previous years, ESA’s largest establishment in Europe invited the public to meet space engineers, astronauts and to see actual space hardware. Attendees explored state-of-the-art facilities, interacted with ESA and NASA astronauts and discovered various job opportunities at ESA. There was also a full schedule of talks from Space Rocks, celebrating the art and culture of science and space.
      View the full article
  • Check out these Videos

×
×
  • Create New...