Jump to content

NASA’s Tiny BurstCube Mission Launches to Study Cosmic Blasts


NASA

Recommended Posts

  • Publishers

4 min read

NASA’s Tiny BurstCube Mission Launches to Study Cosmic Blasts

This artist’s concept shows the BurstCube satellite in orbit against a background of stars.
BurstCube, shown in this artist’s concept, will orbit Earth as it hunts for short gamma-ray bursts.
NASA’s Goddard Space Flight Center Conceptual Image Lab

NASA’s BurstCube, a shoebox-sized satellite designed to study the universe’s most powerful explosions, is on its way to the International Space Station.

The spacecraft travels aboard SpaceX’s 30th Commercial Resupply Services mission, which lifted off at 4:55 p.m. EDT on Thursday, March 21, from Launch Complex 40 at Cape Canaveral Space Force Station in Florida. After arriving at the station, BurstCube will be unpacked and later released into orbit, where it will detect, locate, and study short gamma-ray bursts – brief flashes of high-energy light.

“BurstCube may be small, but in addition to investigating these extreme events, it’s testing new technology and providing important experience for early career astronomers and aerospace engineers,” said Jeremy Perkins, BurstCube’s principal investigator at NASA’s Goddard Space Flight Center in Greenbelt, Maryland.

The BurstCube satellite sits on a table with its solar panels extended.
The BurstCube satellite sits in its flight configuration in this photo taken in the Goddard CubeSat Lab in 2023.
NASA/Sophia Roberts

Short gamma-ray bursts usually occur after the collisions of neutron stars, the superdense remnants of massive stars that exploded in supernovae. The neutron stars can also emit gravitational waves, ripples in the fabric of space-time, as they spiral together.

Astronomers are interested in studying gamma-ray bursts using both light and gravitational waves because each can teach them about different aspects of the event. This approach is part of a new way of understanding the cosmos called multimessenger astronomy.

The collisions that create short gamma-ray bursts also produce heavy elements like gold and iodine, an essential ingredient for life as we know it.

Currently, the only joint observation of gravitational waves and light from the same event – called GW170817 – was in 2017. It was a watershed moment in multimessenger astronomy, and the scientific community has been hoping and preparing for additional concurrent discoveries since.

“BurstCube’s detectors are angled to allow us to detect and localize events over a wide area of the sky,” said Israel Martinez, research scientist and BurstCube team member at the University of Maryland, College Park and Goddard. “Our current gamma-ray missions can only see about 70% of the sky at any moment because Earth blocks their view. Increasing our coverage with satellites like BurstCube improves the odds we’ll catch more bursts coincident with gravitational wave detections.”

BurstCube’s main instrument detects gamma rays with energies ranging from 50,000 to 1 million electron volts. (For comparison, visible light ranges between 2 and 3 electron volts.)

When a gamma ray enters one of BurstCube’s four detectors, it encounters a cesium iodide layer called a scintillator, which converts it into visible light. The light then enters another layer, an array of 116 silicon photomultipliers, that converts it into a pulse of electrons, which is what BurstCube measures. For each gamma ray, the team sees one pulse in the instrument readout that provides the precise arrival time and energy. The angled detectors inform the team of the general direction of the event.

BurstCube belongs to a class of spacecraft called CubeSats. These small satellites come in a range of standard sizes based on a cube measuring 10 centimeters (3.9 inches) across. CubeSats provide cost-effective access to space to facilitate groundbreaking science, test new technologies, and help educate the next generation of scientists and engineers in mission development, construction, and testing.

This photograph shows four people preparing the BurstCube satellite for thermal vacuum testing.
Engineers attach BurstCube to the platform of a thermal vacuum chamber at Goddard ahead of testing.
NASA/Sophia Roberts

“We were able to order many of BurstCube’s parts, like solar panels and other off-the-shelf components, which are becoming standardized for CubeSats,” said Julie Cox, a BurstCube mechanical engineer at Goddard. “That allowed us to focus on the mission’s novel aspects, like the made-in-house components and the instrument, which will demonstrate how a new generation of miniaturized gamma-ray detectors work in space.”

BurstCube is led by NASA’s Goddard Space Flight Center in Greenbelt, Maryland. It’s funded by the Science Mission Directorate’s Astrophysics Division at NASA Headquarters. The BurstCube collaboration includes: the University of Alabama in Huntsville; the University of Maryland, College Park; the University of the Virgin Islands; the Universities Space Research Association in Washington; the Naval Research Laboratory in Washington; and NASA’s Marshall Space Flight Center in Huntsville.

By Jeanette Kazmierczak
NASA’s Goddard Space Flight Center, Greenbelt, Md.

Media Contact:
Claire Andreoli
(301) 286-1940
claire.andreoli@nasa.gov
NASA’s Goddard Space Flight Center, Greenbelt, Md.

Keep Exploring

Discover More Topics From NASA

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      A recent NASA-funded study quantified higher levels of fine particulate air pollution near Southern California warehouses, a result of emissions from diesel trucks that transport goods to and from such facilities. Inhalation of these tiny particles can cause serious health problems.Adobe Stock/Matt Gush Satellite-based data offers a broad view of particulate air pollution patterns across a major West Coast e-commerce hub.
      As goods of all shapes and sizes journey from factory to doorstep, chances are they’ve stopped at a warehouse along the way — likely several of them. The sprawling structures are waypoints in the logistics networks that make e-commerce possible. Yet the convenience comes with tradeoffs, as illustrated in a recent NASA-funded study.
      Published in the journal GeoHealth, the research analyzes patterns of particulate pollution in Southern California and found that ZIP codes with more or larger warehouses had higher levels of contaminants over time than those with fewer or smaller warehouses. Researchers focused on particulate pollution, choosing Southern California because it is a major distribution hub for goods: Its ports handle 40% of cargo containers entering the country.
      The buildings themselves are not the major particulate sources. Rather, it’s the diesel trucks that pick up and drop off goods, emitting exhaust containing toxic particles called PM2.5. At 2.5 micrometers or less, these pollutants can be inhaled into the lungs and absorbed into the bloodstream. Although atmospheric concentrations are typically so small they’re measured in millionths of a gram per cubic meter, the authors caution that there’s no safe exposure level for PM2.5.
      “Any increase in concentration causes some health damage,” said co-author Yang Liu, an environmental health researcher at Emory University in Atlanta. “But if you can curb pollution, there will be a measurable health benefit.”
      A data visualization shows the average concentration of PM2.5 particulate pollution in the Los Angeles region from 2000 to 2018, along with the locations of nearly 11,000 warehouses. Darker red indicates higher concentration of these toxic particles; small black circles represent warehouse locations.NASA Earth Observatory Growing Air Quality Research
      Particulate pollution has been linked to respiratory and cardiovascular diseases, some cancers, and adverse birth outcomes, including premature birth and low infant birth weight.
      The new study is part of a broader effort funded by the NASA Health and Air Quality Applied Sciences Team to use satellite data to understand how air pollution disproportionately affects underserved communities.
      As the e-commerce boom of recent decades has spurred warehouse construction, pollution in nearby neighborhoods has become a growing area for research. New structures have often sprouted on relatively inexpensive land, which tends to be home to low-income or minority populations who bear the brunt of the poor air quality, Liu said.
      Another recent NASA-funded study analyzed satellite-derived nitrogen dioxide (NO2) measurements around 150,000 United States warehouses. It found that concentrations of the gas, which is a diesel byproduct and respiratory irritant, were about 20% higher near warehouses.
      Distribution Hub
      For the GeoHealth paper, scientists drew on previously generated datasets of PM2.5 from 2000 to 2018 and elemental carbon, a type of PM2.5 in diesel emissions, from 2000 to 2019. The data came from models based on satellite observations, including some from NASA’s MODIS (Moderate Resolution Imaging Spectroradiometer) and ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) instruments.
      The researchers also mined a real estate database for the square footage as well as the number of loading docks and parking spaces at nearly 11,000 warehouses across portions of Los Angeles, Riverside, and San Bernardino counties, and all of Orange County.
      They found that warehouse capacity correlated with pollution. ZIP codes in the 75th percentile of warehouse square footage had 0.16 micrograms per cubic meter more PM2.5 and 0.021 micrograms per cubic meter more elemental carbon than those in the 25th percentile.
      Similarly, ZIP codes in the 75th percentile of number of loading docks had 0.10 micrograms per cubic meter more PM2.5 and 0.014 micrograms per cubic meter more elemental carbon than those in the 25th percentile. And ZIP codes in the 75th percentile of truck parking spaces had 0.21 micrograms per cubic meter more PM2.5 and 0.021 micrograms per cubic meter more elemental carbon than those in the 25th percentile.
      “We found that warehouses are associated with PM2.5 and elemental carbon,” said lead author Binyu Yang, an Emory environmental health doctoral student.
      Although particulate pollution fell from 2000 to 2019 due to stricter emissions standards, the concentrations in ZIP codes with warehouses remained consistently higher than for other areas.
      Researchers also found that the gaps widened in the holiday shopping season, up to 4 micrograms per cubic meter — “a significant difference,” Liu said.
      Satellites Provide Big Picture
      Satellite observations, the researchers said, were essential because they provided a continuous map of pollution, including pockets not covered by ground-based instruments.
      It’s the same motivation behind NASA’s TEMPO (Tropospheric Emissions: Monitoring of Pollution) mission, which launched in April 2023 and measures air pollution hourly during daylight over North America. The release of TEMPO’s first maps showed higher concentrations of NO2 around cities and highways.
      Meanwhile, NASA and the Italian Space Agency are collaborating to launch the MAIA (Multi-Angle Imager for Aerosols) in 2026. It will be the first NASA satellite mission whose primary goal is to study health effects of particulate pollution while distinguishing between PM2.5 types.
      “This mission will help air quality managers and policymakers conceive more targeted pollution strategies,” said Sina Hasheminassab, a co-author and science systems engineer at NASA’s Jet Propulsion Laboratory in Southern California. Hasheminassab, like Liu, is a member of the MAIA science team.
      News Media Contacts
      Andrew Wang / Jane J. Lee
      Jet Propulsion Laboratory, Pasadena, Calif.
      626-379-6874 / 818-354-0307
      andrew.wang@jpl.nasa.gov / jane.j.lee@jpl.nasa.gov
      2024-134
      Share
      Details
      Last Updated Oct 09, 2024 Related Terms
      Earth Earth Science Earth Science Division Jet Propulsion Laboratory MAIA (Multi-Angle Imager for Aerosols) Explore More
      3 min read Connected Learning Ecosystems: Educators Learning and Growing Together
      On August 19-20, 53 educators from a diverse set of learning contexts (libraries, K-12 classrooms,…
      Article 23 hours ago 9 min read Systems Engineer Noosha Haghani Prepped PACE for Space
      Article 23 hours ago 3 min read GLOBE Eclipse and Civil Air Patrol: An Astronomical Collaboration
      The Civil Air Patrol (CAP) is a volunteer organization that serves as the official civilian…
      Article 2 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By European Space Agency
      Video: 00:04:05 ESA’s Hera mission lifted off on a SpaceX Falcon 9 from Cape Canaveral Space Force Station in Florida, USA, on 7 October at 10:52 local time (16:52 CEST, 14:52 UTC).
      Hera is ESA’s first planetary defence mission. It will fly to a unique target among the 1.3 million asteroids in our Solar System – the only body to have had its orbit shifted by human action – to solve lingering unknowns associated with its deflection.
      Hera will carry out the first detailed survey of a ‘binary’ – or double-body – asteroid, 65803 Didymos, which is orbited by a smaller body, Dimorphos. Hera’s main focus will be Dimorphos, whose orbit around the main body was previously altered by NASA’s kinetic-impacting DART spacecraft.
      By sharpening scientific understanding of this ‘kinetic impact’ technique of asteroid deflection, Hera should turn the experiment into a well-understood and repeatable technique for protecting Earth from an asteroid on a collision course.
      View the full article
    • By European Space Agency
      Video: 00:03:03 ESA’s Hera mission lifted off on a SpaceX Falcon 9 from Cape Canaveral Space Force Station in Florida, USA, on 7 October at 10:52 local time (16:52 CEST, 14:52 UTC).
      Hera is ESA’s first planetary defence mission. It will fly to a unique target among the 1.3 million asteroids in our Solar System – the only body to have had its orbit shifted by human action – to solve lingering unknowns associated with its deflection.
      Hera will carry out the first detailed survey of a ‘binary’ – or double-body – asteroid, 65803 Didymos, which is orbited by a smaller body, Dimorphos. Hera’s main focus will be Dimorphos, whose orbit around the main body was previously altered by NASA’s kinetic-impacting DART spacecraft.
      By sharpening scientific understanding of this ‘kinetic impact’ technique of asteroid deflection, Hera should turn the experiment into a well-understood and repeatable technique for protecting Earth from an asteroid on a collision course.
      View the full article
    • By European Space Agency
      Image: Mission control GO for Hera launch View the full article
    • By NASA
      To shape NASA’s path of exploration forward, Dr. Gioia Rau unravels stars and worlds beyond our solar system.
      Name: Dr. Gioia Rau
      Title: Astrophysicist
      Organization: Exoplanets and Stellar Astrophysics Laboratory, Astrophysics Division, Science Mission Directorate (Code 667)
      Dr. Gioia Rau is an astrophysicist at NASA’s Goddard Space Flight Center in Greenbelt, Md.Photo courtesy of Gioia Rau What do you do and what is most interesting about your role here at Goddard?
      I’m an astrophysicist who studies both evolved stars, stars that about to die, and exoplanets, planets outside our solar system. I study the stars that once held the elements that are in our body, such as calcium. I also lead the science part of several mission concept studies. And I am really passionate about strategic thinking.
      How does it feel to achieve your childhood dream of becoming an astrophysicist at NASA?
      I am from Italy. Growing up, I was always fascinated by NASA. As a child, I watched the shuttle launches. I loved everything about stars, planets, and galaxies. I devoured astronomy books. I always knew that I wanted to study astrophysics.
      Around 10 years old, I wrote a letter to NASA saying that I wanted to become an astrophysicist to study the universe. NASA sent me information and encouraged me to study and work hard. So I did.
      I still remember my first day working at NASA. I looked around with so much joy at my dream coming true. Every day that I work at Goddard, I find more passion to continue pursue my dreams.
      What is your educational background?
      In 2009, I earned a Bachelor of Science in physics from the University of Rome, La Sapienza. In 2011, I obtained a master’s in physics and astrophysics there. Also in 2011, I was awarded a very competitive fellowship to do a master’s thesis at the California Institute of Technology and NASA’s Jet Propulsion Lab thanks to my high GPA. In 2016, I earned a Ph.D. in astrophysics from the University of Vienna. I came to Goddard in 2017 when I obtained a NASA post-doctoral fellowship.
      Why do you study evolved stars? 
      Evolved stars are the future of our own Sun, which in about 5 billion years will die. Evolved stars also produce elements found in our own bodies, as, for example, the calcium in our bones, the iron in our blood, and the gold in our rings. The stardust that I study is spread by the stellar winds into the interstellar medium to form new generation of stars and planets, and contribute to the cosmic recycle of matter in the universe.
      As Carl Sagan said, “We are all made of stardust.”
      What is most interesting about studying exoplanets?
      If we discover an exoplanet within the habitable zone of its star, we increase the likelihood of finding a planet with Earth-like conditions. This can enhance our understanding of planetary formation processes, and help determine if these exoplanets may harbor life through studying their atmospheres.
      My team of students and scientists used Artificial Intelligence techniques to discover new exoplanet candidates. They are called candidates because they need to be confirmed through follow-up observations. It was a very exciting, pioneering project using cutting-edge techniques.
      Why is working on mission concepts important to you?
      Mission concepts represent the future of space exploration, and I lead the science team of multiple mission concepts. By working on these pioneering projects, we as teams are actively shaping the future of NASA, and advancing the field of astrophysics. I am grateful for the opportunity to collaborate with so many brilliant scientists and engineers. I am passionate about strategic thinking and the visionary process behind it to shape the future of science and of organizations alike. I thrive on seeing the big picture and contributing to initiative that shape the future of organizations and people alike.
      Why do you love mentoring?
      I love working with students. It is gratifying to teach them and fuel their passions and also, again, working with the next generation helps shape NASA’s future. I tell the students what I firmly believe: that resilience, grit, passion, and hard work are some of the most important qualities in a scientist. That integrity, humility, and flexibility are great values to honor as a scientist. And I tell them not to be afraid of trying something new. After all, failure is part of being a scientist. Doing science is about learning from failures, to be successful. As scientists, we follow the scientific method to test our hypotheses through experiments. Ninety-nine percent of the time that experiment does not work the first time. So we need to keep refining the experiment until it does work. I also tell my students to keep in focus their goal, and work very hard toward it: make a plan and stick to it.
      What is your message when you do outreach?
      I started doing outreach when I was in college. I have since done hundreds of outreach events; I am passionate about sharing the joy of astrophysics, and my passion for it, with the general public! When I do outreach, my goal is to make the Universe accessible to the public: the Cosmos belongs to all of us, and we can all enjoy the beauty and wanders of the Universe, together.  I aim to build connections that bridge the gap between science and the public, working together to deepen our understanding of the Universe and inspire the next generation of scientists. I also remind the audience that behind every success there are a multitude of failures that led to that success. I tell them why I am passionate about science and how I became an astrophysicist at NASA. Engaging with people makes science more accessible and relatable. Outreach inspires the next generation to become scientists.
      Who is your science hero?
      Hypatia. She was an astronomer and a philosopher who lived in ancient Greece. At that time, scientists were also philosophers, and I love philosophy. She was martyred because her views were considered to be against the established way of thinking. She was a martyr for freedom of thought.
      Do you have a phrase that you live by?
      Keep on dreaming, and work hard toward your goals; ad astra per aspera!
      Who do you wish to thank?
      My father and my mother, and my current family: my husband who is my biggest supporter and fan, and my kids for the joy they bring. I also would like to thank all my mentors along the way. They always believed in me and guided me on my path.
      What do you do for fun?
      I love playing volleyball, skiing, reading, taking photos, playing the piano and the guitar, hiking, sailing, baking, and of course being with my family.
      What is your “six-word memoir”? A six-word memoir describes something in just six words.
      Unraveling mysteries, shaping futures, inspiring paths.
      Conversations With Goddard is a collection of Q&A profiles highlighting the breadth and depth of NASA’s Goddard Space Flight Center’s talented and diverse workforce. The Conversations have been published twice a month on average since May 2011. Read past editions on Goddard’s “Our People” webpage.
      Share
      Details
      Last Updated Oct 01, 2024 EditorMadison OlsonContactRob Garnerrob.garner@nasa.govLocationGoddard Space Flight Center Related Terms
      People of Goddard Goddard Space Flight Center People of NASA Explore More
      8 min read Julie Rivera Pérez Bridges Business, STEM to ‘Make the Magic Happen’
      Article 1 week ago 5 min read Rob Gutro: Clear Science in the Forecast
      Article 2 weeks ago 8 min read Rob Garner: Editing Goddard’s Story to Fit the Space
      Article 2 weeks ago View the full article
  • Check out these Videos

×
×
  • Create New...