Jump to content

Advancing Human Spaceflight Safety


NASA

Recommended Posts

  • Publishers

As NASA continues to pursue new human missions to low Earth orbit, lunar orbit, the lunar surface, and on to Mars, the NESC continues to provide a robust technical resource to address critical challenges.

The NESC Environmental Control and Life Support Systems (ECLSS), Crew Systems, and Extravehicular Activity (EVA) discipline is led by the NASA Technical Fellow for ECLS, Dr. Morgan Abney, ECLSS & Crew Systems Deputy Dave Williams, Extravehicular & Human Surface Mobility Deputy Danielle Morris, and EVA Deputy Colin Campbell. In 2023, this team led assessments and provided support to the Commercial Crew Program, ISS, Orion Multi-Purpose Crew Vehicle, Extravehicular and Human Mobility Program, Gateway International Habitat, and Moon-to-Mars Program. Three of the most notable activities in 2023 are briefly described below.

Mitigation for Water in the Helmet During EVA

During EVA22 in 2013, water was observed in the helmet and assumed to be the result of a “burp” from the drink bag. No further investigation was pursued because water had been observed to some degree (water on visor, wet hair, etc.) on eight previous occasions. The result was a nearly catastrophic event during EVA23, where astronaut Luca Parmitano experienced dangerous quantities of water in his helmet. Both EVA23 and EVA35 in 2016 contributed to identification of drowning as a key risk, which resulted in several water mitigation approaches. Based on these approaches, the program determined the risk level to be acceptable for nominal EVA. However, in March 2022, a crewmember returning from EVA80 noticed water accumulated on the visor of his helmet obstructing ~30-50% of his field of view. Due to the increasing complexity of EVA objectives on EVA80 and forward, the ISS Program identified loss or reduction of visibility as a greater risk than previously recognized and sought to identify methods to prevent even small quantities of liquid water from forming in the helmet during EVA. The NESC was asked to provide support to the activity through modeling of the helmet and two-phase (water and oxygen) flow behavior in microgravity, through model validation testing, and through testing of mitigation hardware identified by the larger team. The model predictions provided a map (Figure 1) of anticipated liquid water formations based on the contact angle between the face or head and the helmet surface. Based on the ISS helmet with no water mitigations, the model predicted that large blobs would most likely form bridges between the helmet and face and that rupture of those bridges would result in the majority of liquid transferring to the face. To mitigate this risk, the ISS EVA80 team devised a solution to add absorbent materials in the path of the oxygen and water entering the helmet. Following EVA23, the helmet absorption pad (HAP) was added for bulk water collection. The improved mitigation strategy based on EVA80 included a HAP extender (HAP-E) and a helmet absorption band (HAB) (Figure 2). The NESC provided modeling of the mitigation hardware and validation testing of the HAB configuration using flow conditions anticipated in ISS operation (Figure 3). The testing provided ground validation of the HAB performance. The HAB and HAP-E have both been implemented in flight.

techup2023-pg58-61-art1.png?w=2048
Figure 1. Map of predicted water formations within a helmet as a function of face/head and helmet contact angles. Dashed rectangle indicates the expected domain of the ISS helmet with no water mitigations. 
techup2023-pg58-61-art2.png?w=2048
Figure 2. Water mitigation strategy for the ISS helmet: a) sketch of HAP, HAP-E, and HAB, b) side view of early prototype, c) bottom view of early prototype. 
techup2023-pg58-61-art3.png?w=1386
Figure 3. HAB ground validation testing under trickle water flow conditions.

Evaluation of Terrestrial Portable Fire Extinguishers for Microgravity Applications 

The tragic fire of Apollo 1 has, of necessity, instilled in NASA an enduring respect for the risk of fire in spacecraft. As such, robust fire detection and response systems have been a cornerstone of NASA-designed vehicles. Portable fire extinguishers (PFE) are a fundamental fire response capability of spacecraft and both carbon dioxide and water-based PFEs have been used by NASA historically. However, terrestrial-based PFEs, particularly those using new halon-based suppressants, may provide improved capability beyond the NASA state-of-the-art. In 2023, the NESC sought to evaluate the effectiveness of commercial-off-the-shelf (COTS) PFEs in microgravity. The team developed an analytical model to predict the discharge rate of three terrestrial COTS PFEs containing CO2, HFC-227ea, and Novec 1230. The model considered the internal geometry of the PFEs, the material properties of the suppressants and their corresponding PFE tanks, and the effects of microgravity and in-flight perturbations. The results predicted that for PFE tanks containing dip tubes, like those for HFC-227ea and Novec 1230 where nitrogen gas is used as a pressurant, microgravity plays a significant role in the discharge performance due to two-phase flow. Figure 4 shows the various equilibrium configurations based on gravity and perturbations. As a comparison, the analysis predicts >80% discharge of the HFC-227ea in the COTS PFE within ~30 seconds with the remainder discharging over ~0.5-1 hours when discharged in a terrestrial fire (Figure 4A), while only 60-80% discharges in 30 seconds with the remainder discharging over 1-2 hours in microgravity (Figure 4C). 

techup2023-pg58-61-art4.png?w=1406
Figure 4. Equilibrium two-phase configurations of nitrogen (white)-pressurized liquid suppressant (blue). A) PFE held nominally with nozzle up in 1-g with no perturbations, B) PFE held inverted in 1-g or in 0-g where liquid preferentially accumulates away from the dip tube entrance with no perturbations, C) PFE in 0-g at the statistically most probable state with no perturbations, D) PFE in 0-g where nitrogen preferentially accumulates at ends of the PFE with no perturbations, E) PFE in any level gravity with significant perturbations (shaken up), and F) statistically most probable state in 0-g following complete discharge.

Based on this analysis, the use of terrestrially designed PFEs containing gaseous pressurant over a liquid suppressant will likely result in decreased initial discharge of the suppressant and significantly longer total discharge times in microgravity as compared to terrestrial discharge performance. Testing is ongoing to validate the models using a custom-designed PFE test stand (Figures 5 and 6) that enables multi-configuration testing of COTS PFEs. 

techup2023-pg58-61-art5.png?w=1368
Figure 5. (left) PFE test stand for model validation. Design prevents directional load effects to enable accurate mass measurement during PFE discharge. Figure 6. (right) Insulated PFE housing and remote discharge control allows for accurate, real-time thermal measurements during validation testing.

Standardized Abrasion, Cut, and Thermal Testing for Spacesuit Gloves and Materials  

State-of-the-art spacesuit gloves have been optimized for the challenges of ISS. Artemis missions call for high-frequency EVAs at the lunar south pole, where temperatures in the permanently shadowed region (PSR) will expose crew gloves to temperatures lower than ever previously experienced and where frequent and repeated exposure to regolith dust and rocks will present significantly increased risk for abrasion and cuts. With the development of new spacesuits by commercial partners, inexpensive and repeatable test methods are needed to characterize, evaluate, and compare gloves and glove materials for their thermal performance at PSR temperatures and for their resistance to lunar regolith abrasion and cuts. To address these needs, the NESC is leading a team to develop standardized test methods in coordination with ASTM International Committee F47 on Commercial Spaceflight.  

Three standardized methods are currently in development. The first method seeks to standardize lunar dust abrasion testing of glove (and suit) materials based on adapted “tumble testing” first proposed at NASA in 1990. The NASA-designed tumbler (Figure 7) enables testing of six samples per run and compares pre- and post-tumbled tensile strength of materials to compare abrasion resistance. The method is highly controlled using a commercially available tumble medium and lunar regolith simulant.  

Because material properties change with temperature, the second method seeks to develop a standardized approach to evaluate the cut resistance of glove materials at relevant cryogenic temperatures. The method is an adaptation of ASTM F2992 Standard Test Method for Measuring Cut Resistance of Materials Used in Protective Clothing with Tomodynamometer (TDM-100) Test Equipment. In order to allow for cut evaluation at cryogenic temperatures, the TDM-100 cut fixture was modified to include channels for liquid nitrogen flow (Figure 8A), thereby cooling the test material to 77 K. 

techup2023-pg58-61-art6.png?w=1366
Figure 7. Hardware used in the tumble test method. Tumbler apparatus (left). Tumbler with panel removed to show lunar regolith simulant and commercially available tumbler media (top right). Tumbler panel showing lunar regolith simulant (bottom right).

The third method seeks to evaluate the thermal performance of gloves down to PSR requirement temperature of 48 K. Historical thermal testing of gloves was conducted with human-in-the-loop (HITL) testing for both radiative and conductive cooling. Conductive cooling was accomplished by having the test subject grab thermally controlled “grasp objects” and maintain contact until their skin temperature reached 283 K (50 ºF) or until they felt sufficient discomfort to end the test themselves. While HITL testing is critical for final certification of gloves, iterative design and development testing would benefit from a faster, less expensive test. To meet this need, the NESC is developing a glove thermal test that uses a custom manikin hand designed by Thermetrics, LLC (Figure 8B). 

techup2023-pg58-61-art7-1.png?w=1374
Figure 8. A) Mandrel used in cut testing as designed for ambient testing (left) and cryogenic testing (right). Flow channels allow for liquid nitrogen flow to cool the material sample to cryogenic temperatures. B) Prototype of Thermetrics, LLC custom manikin hand for spacesuit glove thermal testing.

The manikin hand is outfitted with temperature and heat flux sensors to monitor heat transfer to the hand. The hand is placed within a spacesuit glove and thermally controlled with internal water flow to simulate human heat generation. The Cryogenic Ice Transfer, Acquisition, Development, and Excavation Laboratory (CITADEL) chamber at JPL is then used to test the glove thermal performance at a range of temperatures from 200 K down to 48 K. Thermal performance is evaluated to mimic historical HITL testing under both radiative and conductive cooling. Conductive cooling is accomplished through a temperature-controlled touch object and is evaluated using two touch pressures. All three methods will be incorporated as ASTM F47 standard test procedures following NASA and ASTM committee review and approvals (targeting 2024).  

techup2023-pg58-61-art8.png?w=2048
ASA astronaut and Expedition 68 Flight Engineer Nicole Mann is pictured in her Extravehicular Mobility Unit (EMU) during an EVA. The NESC has recently contributed to astronaut safety investigations of water accumulating in EMU helmets during EVAs, and developing EMU gloves for use in the harsh conditions of the lunar south pole.

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      On flight day 13, Orion reached its maximum distance from Earth during the Artemis I mission when it was 268,563 miles away from our home planet. Orion has now traveled farther than any other spacecraft built for humans.Credit: NASA NASA’s Orion spacecraft is designed to keep astronauts safe in deep space, protecting them from the unforgiving environment far from Earth. During the uncrewed Artemis I mission, researchers from NASA, along with several collaborators, flew payloads onboard Orion to measure potential radiation exposure to astronauts.

      Radiation measurements were taken inside Orion by 5,600 passive sensors and 34 active radiation detectors during its 25.5-day mission around the Moon and back, which provided important data on exposure within the Earth’s Van Allen radiation belt. These detailed findings were published in a recent scientific article through a collaborative effort by NASA’s Space Radiation Analysis Group, the DLR (German Space Center), and ESA (European Space Agency). The measurements show that while radiation exposure can vary depending on location within Orion, the spacecraft can protect its crew from potentially hazardous radiation levels during lunar missions.

      Space radiation could pose major risks to long-duration human space flights, and the findings from the Artemis I mission represent a crucial step toward future human exploration beyond low Earth orbit, to the Moon, and eventually to Mars.

      NASA’s HERA (Hybrid Electronic Radiation Assessor) and Crew Active Dosimeter, which were tested previously on the International Space Station, and ESA’s Active Dosimeter, were among the instruments used to measure radiation inside Orion. HERA’s radiation sensor can warn crew members need to take shelter in the case of a radiation event, such as a solar flare. The Crew Active Dosimeter can collect real-time radiation dose data for astronauts and transmit it back to Earth for monitoring. Radiation measurements were conducted in various areas of the spacecraft, each offering different levels of shielding.

      This high-resolution image captures the inside of the Orion crew module on flight day one of the Artemis I mission. At left is Commander Moonikin Campos, a purposeful passenger equipped with sensors to collect data that will help scientists and engineers understand the deep-space environment for future Artemis missions. Credit: NASA In addition, the Matroshka AstroRad Radiation Experiment, a collaboration between NASA and DLR, involved radiation sensors placed on and inside two life-sized manikin torsos to simulate the impact of radiation on human tissue. These manikins enabled measurements of radiation doses on various body parts, providing valuable insight into how radiation may affect astronauts traveling to deep space.

      Two manikins are installed in the passenger seats inside the Artemis I Orion crew module atop the Space Launch System rocket in High Bay 3 of the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida on Aug. 8, 2022. As part of the Matroshka AstroRad Radiation Experiment (MARE) investigation, the two female manikins – Helga and Zohar – are equipped with radiation detectors, while Zohar also wears a radiation protection vest, to determine the radiation risk on its way to the Moon. Credit: NASA
      Researchers found that Orion’s design can protect its crew from potentially hazardous radiation levels during lunar missions. Though the spacecraft’s radiation shielding is effective, the range of exposure can greatly vary based on spacecraft orientation in specific environments. When Orion altered its orientation during an engine burn of the Interim Cryogenic Propulsion Stage, radiation levels dropped nearly in half due to the highly directional nature of the radiation in the Van Allen belt.

      “These radiation measurements show that we have an effective strategy for managing radiation risks in the Orion spacecraft. However, key challenges remain, especially for long-duration spaceflights and the protection of astronauts on spacewalks,” said Stuart George, NASA’s lead author on the paper.

      NASA’s long-term efforts and research in mitigating space radiation risks are ongoing, as radiation measurements on future missions will depend heavily on spacecraft shielding, trajectory, and solar activity. The same radiation measurement hardware flown on Artemis I will support the first crewed Artemis mission around the Moon, Artemis II, to better understand the radiation exposure seen inside Orion and ensure astronaut safety to the Moon and beyond.

      For more information on NASA’s Artemis campaign, visit:

      https://www.nasa.gov/artemis

      View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Astronaut Kayla Barron looks at chile peppers growing in the Advanced Plant Habitat aboard the International Space Station. Determining the best ways to water plants in space resulted in the development of a new electrostatic spray nozzle, now licensed to industry.Credit: NASA Whether protecting crops from diseases and pests or sanitizing contaminated surfaces, the ability to spray protective chemicals over important resources is key to several industries. Electrostatic Spraying Systems Inc. (ESS) of Watkinsville, Georgia, manufactures electrostatic sprayers and equipment that make this possible. By licensing NASA electrostatic technology, originally made to water plants in space, ESS’s improved spray nozzles efficiently use basic laws of electricity to achieve complete coverage on targeted surfaces. 

      ESS traces its origins to research done at the University of Georgia in the 1970s and ’80s. An electrostatic sprayer works by inducing an electric charge onto atomized droplets. Much like an inflated balloon sticking to a wall when it’s gained a charge of static electricity, the droplets then stick to targeted surfaces.

      NASA’s interest in this technology originated with astronauts’ need for an easy way to support plant-growth experiments in space. On the International Space Station, watering plants without the help of gravity isn’t as easy as using a garden hose on Earth. In the future, using a system like an electrostatic sprayer on the space station or other orbiting destination could help the water droplets stick to the plants with uniform coverage. However, most spraying systems require large sources of water and air to properly aerosolize fluids.

      An ESS mister nozzle undergoes testing at Kennedy Space Center. The design was improved through collaboration between the company and NASA.Credit: NASA As both air and water are precious resources in space, NASA needed an easier way to make these incredibly small droplets. Charles Buhler and Jerry Wang of NASA’s Kennedy Space Center in Florida led the efforts to develop this capability, with Edward Law of the University of Georgia as a consulting expert. Eventually, the NASA team developed a new design by learning from existing technology called a mister nozzle. The benefit of a mister is that even though the interior volume of the nozzle is small, the pressure inside never builds up, which makes it perfect for enclosed small spaces like the space station.

      As the sprayer industry is a tight-knit group, technology transfer professionals at NASA reached out to the companies that could use a nozzle like this on Earth. Electrostatic Spraying Systems responded and later licensed the sprayer design from the agency and incorporated it into the company’s Maxcharge product lines.
      Read More Share
      Details
      Last Updated Oct 07, 2024 Related Terms
      Technology Transfer & Spinoffs Spinoffs Technology Transfer Explore More
      2 min read The Science of the Perfect Cup for Coffee 
      Material research is behind the design of a temperature-regulating mug
      Article 1 week ago 3 min read Measuring Moon Dust to Fight Air Pollution
      Article 3 weeks ago 2 min read Printed Engines Propel the Next Industrial Revolution
      Efforts to 3D print engines produce significant savings in rocketry and beyond
      Article 4 weeks ago Keep Exploring Discover Related Topics
      Technology Transfer & Spinoffs
      Advanced Plant Habitat
      Conducting plant bioscience research aboard the International Space Station The Advanced Plant Habitat (APH) is the largest, fully automated plant…
      Climate Change
      Space Technology Mission Directorate
      View the full article
    • By Space Force
      U.S. Space Command and the Department of Commerce are migrating the provision of public services relating to spaceflight safety, currently provided via space-track.org, from USSPACECOM to OSC’s new Traffic Coordination System for Space.

      View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      President and CEO of the Hispanic Heritage Foundation Jose Antonio Tijerino, left, and NASA Deputy Administrator Pam Melroy, sign a Space Act Agreement between the HHF and NASA to collaborate and expand STEM opportunities for Latino K-12 and university students and reduce barriers to agency activities and opportunities, Monday, Sept. 30, 2024, at the NASA Headquarters Mary W. Jackson Building in Washington.NASA/Bill Ingalls During an event at NASA Headquarters in Washington Monday, the agency and the Hispanic Heritage Foundation signed a Space Act Agreement to collaborate and expand STEM opportunities for Latino K-12 and university students and reduce barriers to agency activities and opportunities.
      The signing is the latest in a series of efforts by NASA to expand access to STEM education for underrepresented communities across the nation.
      “Through this agreement, NASA and the Hispanic Heritage Foundation are not just formalizing a partnership; we are igniting a commitment to innovation that will shape the future of our endeavors,” said Deputy Administrator Pam Melroy. “This initiative will help build a diverse future science, technology, engineering, and mathematics workforce, showcasing our commitment to making America’s space agency accessible to all.” 
      As part of the agreement, the Hispanic Heritage Foundation will incorporate NASA STEM education resources, content, and themes into its Latinos on the Fast Track (LOFT) program, which aims to connect, inspire, and empower young Latino professionals and college students on their career journey. In turn, NASA will provide access to aerospace STEM education professionals to support technical reviews for the development of new curriculum materials and facilitate information sharing with NASA experts and mentors who will lead presentations and workshops to expose students to STEM careers. 
      “The Hispanic Heritage Foundation is thrilled to partner with NASA to expand STEM opportunities and expose Latinos to career pathways in aerospace and space travel,” said Antonio Tijerino, president and CEO of the Hispanic Heritage Foundation. “This innovative partnership with NASA will allow us to expand our mission even beyond our planet!”
      While initial efforts will be led by NASA’s Office of STEM Engagement, the umbrella agreement also allows for further collaboration and partnership in the future. Specifically, the agency and the Hispanic Heritage Foundation will look to support certain areas of NASA’s Equity Action Plan.
      NASA works to explore the secrets of the universe and solve the world’s most complex problems, which requires creating space for all people to participate in and learn from its work in space. Providing access to opportunities where young minds can be curious and see themselves potentially at NASA and beyond is how the agency will continue to inspire the next generation of STEM innovators.
      For more information on how NASA inspires students to pursue STEM visit:
      https://www.nasa.gov/learning-resources
      Share
      Details
      Last Updated Sep 30, 2024 Related Terms
      General Explore More
      3 min read NASA’s BioSentinel Studies Solar Radiation as Earth Watches Aurora
      Article 4 days ago 9 min read SARP West 2024 Oceans Group
      Article 5 days ago 10 min read SARP West 2024 Whole Air Sampling (WAS) Group
      Article 5 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      NASA’s SpaceX Crew-9 commander Nick Hague is pictured in his flight suit during training at SpaceX headquarters in Hawthorne, California. Hague will perform human health and performance research on the International Space Station as part of his mission.SpaceX NASA astronaut Nick Hague and Roscosmos cosmonaut Aleksandr Gorbunov will soon dock with the International Space Station as part of the agency’s SpaceX Crew-9 mission, a venture which will enhance scientific research and bolster the knowledge about how people can live and work in space.
      During the planned five-month mission, Hague’s mission tasks will include participating in a variety of research projects for NASA’s Human Research Program. Each study is designed to help address the health challenges that astronauts may face during future long-duration missions to the Moon, Mars, and beyond.
      “Hague’s experiences and research may potentially lead to scientific breakthroughs that may not be possible on Earth,” said Steven Platts, chief scientist for human research at NASA’s Johnson Space Center in Houston.
      A major focus for Hague’s time aboard the station is to study the suite of space-related vision disorders called Spaceflight Associated Neuro-ocular Syndrome (SANS) which occur as body fluids shift toward the head in weightlessness. These shifts can cause changes to the eye: the optic nerve can swell, the retina may develop folds, and the back of the eye can even flatten. Earlier research suggests multiple factors contribute to the syndrome, so two vision-related studies on this mission will tackle different yet distinct approaches that may help address or even prevent such changes during future missions.
      One project, called Thigh Cuff, will explore whether wearing fitted cuffs could counter the syndrome by keeping more bodily fluids in the legs. Thigh cuffs are compact, lightweight, and easy to use, which makes them appealing for potential use during long-duration, deep space missions.
      For this study, Hague will wear the thigh cuffs for six hours during two sessions. To help researchers measure how well the cuffs work, he will record ultrasound images of blood flow in his legs and neck veins during the sessions. Researchers will also compare this data against ultrasounds taken without the cuff to examine flow differences.
      “Thigh cuffs like these may allow researchers to better investigate medical conditions that result in extra fluid in the brain or too much blood returning to the heart,” said study leader Brandon Macias at NASA Johnson.
      In another study, Hague will test if a vitamin regimen may help combat SANS. The study, led by Sara Zwart, a nutritional biochemist at NASA Johnson, seeks to examine if a daily vitamin B supplement—taken before, during, and after flight—can prevent or mitigate swelling at the back of the eye. The research will also assess how an individual’s genetics may influence the response.
      “Earlier research suggests that some people are more susceptible to this ocular syndrome than others based on genetics that can influence B vitamin requirements, so taking daily vitamins may make all the difference,” Zwart said. “We think by giving the B vitamins, we could be taking that piece of genetic variability out of the equation.”
      The work also may eventually improve care options for women on Earth with polycystic ovary syndrome, a condition that can cause eye changes and infertility in women. Researchers hope that patients may similarly benefit from targeting the same genetic pathways and vitamin supplementation as crew members in space.
      Hague also will record data to study whether a new way of administering a common anti-nausea medicine can help alleviate motion sickness following launch and landing. In this study, Hague can self-administer a novel nasal gel formulation of the medication scopolamine. Hague will note his experiences using this medicine and any other motion sickness aides, including alternative medications or behavioral interventions like specific head movements.
      This research, led by neuroscientist Scott  Wood of NASA Johnson, eventually will include 48 people.
      “Our goal is to understand how to help future space travelers adapt to motion sickness when living and working in space,” Wood said. “Crew members must stay healthy and perform key tasks, including landing on the Moon and other destinations.”
      To help NASA plan future missions, Hague also will participate in human research studies that tackle other space challenges, such as avoiding injury upon landing back on Earth and learning how space travel affects the human body on a molecular level.
      ____
      NASA’s Human Research Program pursues the best methods and technologies to support safe, productive human space travel. The program studies how spaceflight affects human bodies and behaviors through science conducted in laboratories, ground-based analogs, commercial missions, and the International Space Station. Such research continues to drive NASA’s mission to innovate ways that keep astronauts healthy and mission-ready as space exploration expands to the Moon, Mars, and beyond.
      Explore More
      1 min read NASA Invites Public to Join as Virtual Guests for SpaceX Crew-9 Launch 
      Article 2 days ago 4 min read Educational Activities in Space
      Article 4 days ago 4 min read NASA Astronaut Tracy C. Dyson’s Scientific Mission aboard Space Station
      Article 1 week ago Keep Exploring Discover More Topics From NASA
      Living in Space
      Artemis
      Human Research Program
      Space Station Research and Technology
      View the full article
  • Check out these Videos

×
×
  • Create New...