Jump to content

Toward the next generation of air quality monitoring


Recommended Posts

Toward_the_next_generation_of_air_qualit Video: 00:17:57

Air pollution is the largest environmental health risk in Europe and significantly impacts the health of the European population, particularly in urban areas.

Following on from the Sentinel-5P satellite – the first Copernicus mission dedicated to monitoring our atmosphere – the Sentinel-4 and Sentinel-5 missions will take current air quality measuring capabilities to the next level.

Together, the Sentinel-4 and -5 missions will provide information on atmospheric variables in support of European policies. This will include the monitoring of air quality, stratospheric ozone and solar radiation, and climate monitoring.

This video features interviews with Giorgio Bagnasco, Sentinel-4 Mission Project Manager, Ben Veilhelmann, Sentinel-4&5 Mission Scientist and Didier Martin, Sentinel-5 Mission Project Manager.

Access all "Unpacking Sentinels" videos.

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Learn Home GLOBE Eclipse and Civil Air… Earth Science Overview Learning Resources Science Activation Teams SME Map Opportunities More Science Activation Stories Citizen Science   3 min read
      GLOBE Eclipse and Civil Air Patrol: An Astronomical Collaboration
      The Civil Air Patrol (CAP) is a volunteer organization that serves as the official civilian auxiliary of the United States Air Force. The organization has an award-winning aerospace education program that promotes Science, Technology Engineering, & Mathematics (STEM)-related careers and activities. The total solar eclipse on 8 April 2024 was a unique opportunity to design a mission for cadets, senior members, and educators to collect atmospheric data in contribution the Global Learning and Observations to Benefit the Environment (GLOBE) Program’s GLOBE Eclipse protocol, for which a temporary tool in the GLOBE Observer app made it possible for volunteer observers to document and submit air temperature and cloud data during the eclipse.
      For the first time ever, the CAP had cadets and senior members participating in a mission from every wing (US state), in addition to two US territories and 2 Canadian provinces. Over 400 teams with over 3,000 cadets and over 1,000 senior members collected air temperature, clouds, wind, and precipitation for a total of 4 hours before, during, and after the eclipse. This work was led by Capt. Shannon Babb who organized the mission with the aerospace education team led from the Rocky Mountain Region.
      The collaboration between GLOBE Eclipse and CAP gave cadets the opportunity to do real, hands-on Earth science and be part of a mission alongside senior members. It also brought in over 40,000 students and more than 600 educators through the Civil Air Patrol’s education sites involving K-12 formal and informal educators at schools, youth organizations, museums and libraries. This unique collaboration was so successful, the CAP wants to continue doing missions alongside citizen science programs at NASA and the GLOBE Program. A 2025 mission is being formulated, focused on contrail formation using the strengths of the CAP in aeronautics and unique cloud observations made using the GLOBE Observer app. Results and announcements of 2025 mission plans were presented at the Civil Air Patrol National Conference on 16-17 August 2024 in San Antonio, Texas, USA.
      GLOBE Observer is part of the NASA Earth Science Education Collaborative (NESEC), which is led by the Institute for Global Environmental Strategies (IGES) and supported by NASA under cooperative agreement award number NNX16AE28A. NESEC is part of NASA’s Science Activation Portfolio. Learn more about how Science Activation connects NASA science experts, real content, and experiences with community leaders to do science in ways that activate minds and promote deeper understanding of our world and beyond: https://science.nasa.gov/learn
      https://www.gocivilairpatrol.com/programs/aerospace-education/curriculum/2024-solar-eclipse
      Civil Air Patrol Cadet observing the 8 April 2024 total solar eclipse. Civil Air Patrol Civil Air Patrol Cadets making atmospheric measurements during the 8 April 2024 total solar eclipse. Civil Air Patrol Civil Air Patrol Cadets making atmospheric measurements during the 8 April 2024 total solar eclipse. Civil Air Patrol Civil Air Patrol Cadet observing the 8 April 2024 total solar eclipse. Civil Air Patrol Civil Air Patrol Cadet observing the 8 April 2024 total solar eclipse. Civil Air Patrol Share








      Details
      Last Updated Oct 07, 2024 Editor NASA Science Editorial Team Related Terms
      2024 Solar Eclipse Earth Science Opportunities For Educators to Get Involved Opportunities For Students to Get Involved Science Activation Explore More
      5 min read Science Activation’s PLACES Team Facilitates Third Professional Learning Institute


      Article


      3 days ago
      2 min read Culturally Inclusive Planetary Engagement in Colorado


      Article


      4 days ago
      40 min read GPM Celebrates Ten Years of Observing Precipitation for Science and Society


      Article


      4 days ago
      Keep Exploring Discover More Topics From NASA
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Perseverance Rover


      This rover and its aerial sidekick were assigned to study the geology of Mars and seek signs of ancient microbial…


      Parker Solar Probe


      On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona…


      Juno


      NASA’s Juno spacecraft entered orbit around Jupiter in 2016, the first explorer to peer below the planet’s dense clouds to…

      View the full article
    • By NASA
      10 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      The Whole Air Sampling (WAS) group, from the 2024 Student Airborne Research Program (SARP) West Coast cohort, poses in front of the natural sciences building at UC Irvine, during their final presentations on August 13, 2024. NASA Ames/Milan Loiacono Faculty Advisor: Dr. Donald Blake, University of California, Irvine
      Graduate Mentor: Katherine Paredero, Georgia Institute of Technology

      Katherine Paredero, Graduate Mentor
      Katherine Paredero, graduate student mentor for the 2024 SARP West Whole Air Sampling (WAS) group, provides an introduction for each of the group members and shares behind-the scenes moments from the internship.

      Mikaela Vaughn
      Urban Planning Initiative: Investigation of Isoprene Emissions by Tree Species in the LA Basin
      Mikaela Vaughn, Virginia Commonwealth University
      Elevated ozone concentrations have been a concern in Southern California for decades. The interaction between volatile organic compounds (VOC) and nitrous oxides (𝑁𝑂!) in the presence of sunlight leads to enhanced formation of tropospheric ozone (𝑂”) and secondary organic aerosols (SOA). This can lead to increased health hazards, exposing humans to aerosols that can enter and be absorbed by the lungs, as well as a warming effect caused by ozone’s role as a greenhouse gas in the lower levels of the atmosphere. This study will focus on a VOC that is of particular interest, isoprene, which has an atmospheric lifetime of one hour, making it highly reactive in the presence of the hydroxyl radical (OH) and resulting in rapid ozone formation. Isoprene is a biogenic volatile organic compound (BVOC) emitted by vegetation as a byproduct of photosynthesis. This BVOC has been overlooked but should be investigated further because of its potential to form large sums of ozone. In this study the reactivity of isoprene with OH dominated ozone formation as compared to other VOCs. Ambient isoprene concentrations were measured aboard NASA’s airborne science laboratory (King Air B200) along with whole air sampling canisters. Additionally, isoprene emissions of varying tree species, with one to three samples per type, were compared to propose certain trees to plant in urban areas. Results indicated that Northern Red Oaks and the Palms family emitted the most isoprene out of the nineteen species documented. The species with the lowest observed isoprene emissions was the Palo Verde and the Joshua trees. The difference in isoprene emissions between the Northern Red Oak and Joshua trees is approximately by a factor of 45. These observations show the significance of considering isoprene emissions when selecting tree species to plant in the LA Basin to combat tropospheric ozone formation.
      Joshua Lozano
      VOC Composition and Ozone Formation Potential Observed Over Long Beach, California
      Joshua Lozano, Sonoma State University
      Volatile organic compounds (VOCs), when released into the atmosphere, undergo chemical reactions in the presence of sunlight that can generate tropospheric ozone, which can have various health effects. We can gauge this ozone formation by multiplying the observed mixing ratios of VOCs by their respective rate constants (with respect to OH radicals). The OH radical reacts very quickly in the atmosphere and accounts for a large sum of ozone formation from VOCs as a result, giving us an idea of the ozone formation potential (OFP) for each VOC. In this study, we investigate observed mixing ratios of VOCs in order to estimate their contribution to OFP over Long Beach, California. The observed species of VOCs with the highest mixing ratios differs from the observed species with the highest OFP, which highlights that higher mixing ratios of certain VOCs in the atmosphere do not necessarily equate to a higher contribution to ozone formation. This underscores the importance of understanding mixing ratios of VOC species and their reaction rates with OH to gauge impacts on ozone formation. In the summer there were significantly lower VOC concentrations compared to the winter, which was expected because of differences in boundary layer height within the seasons. Additionally, a decrease in average mixing ratios was observed between the summer of 2014 and the summer of 2022. A similar trend was observed in OFP, but by a much smaller factor. This may indicate that even though overall VOC emissions are decreasing in Long Beach, the species that dominate in recent years have a higher OFP. This research provides a more comprehensive view of how VOCs contribute to air quality issues across different seasons and over time, stressing the need for targeted strategies to mitigate ozone pollution based on current and accurate VOC composition and reactivity.
      Sean Breslin
      Investigating Enhanced Methane and Ethane Emissions over the Long Beach Airport
      Sean Breslin, University of Delaware
      As climate change continues to worsen, the investigation and tracking of greenhouse gas emissions has become increasingly important. Methane, the second most impactful greenhouse gas, has accounted for over 20% of planetary warming since preindustrial times. Methane emissions primarily originate from biogenic and thermogenic sources, such as dairy farms and natural gas extraction. Ethane, an abundant hydrocarbon emitted from biomass burning and natural gas, contributes to the formation of tropospheric ozone. The data for this project was collected in December 2021 and June 2022 aboard the DC-8 aircraft, where whole air samples were taken during low approaches to find potential sources of methane and ethane emissions. Analysis of these samples using gas chromatography revealed a noticeable increase in methane and ethane concentrations over Long Beach Airport, an area surrounded by numerous plugged oil and gas wells extracting crude oil and natural gas. In this study, we observe that methane and ethane concentrations were lower in the summer and higher in the winter, which can be primarily attributed to seasonal variations in the Atmospheric Boundary Layer height. Our results show that in both summer and winter campaigns, the ratio of these two gases over the airport was approximately 0.03, indicating that for every 100 methane molecules, there are 3 ethane molecules. This work identifies methane and ethane hotspots and provides a critical analysis on potential fugitive emission sources in the Long Beach area. These results emphasize a need to perform in depth analyses on potential point sources of greenhouse gas emissions in the Long Beach area.

      Katherine Skeen
      Investigating Elevated Levels of Toluene during Winter in the Imperial Valley
      Katherine Skeen, University of North Carolina at Charlotte
      The Imperial County in Southern California experiences pollutants that do not meet the National Ambient Air Quality Standards, and as a result, residents are suffering from adverse health effects. Volatile organic compounds (VOCs) are compounds with a high vapor pressure at room temperature. They are readily emitted into the atmosphere and form ground level ozone. Toluene is a VOC and exposure poses significant health risks, including neurological and respiratory effects. This study aims to use airborne data to investigate areas with high toluene concentrations and investigate potential source. Flights over the Imperial Valley were conducted in the B200 King Air. Whole air canisters were used to collect ambient air samples from outside the plane. These Whole Air Canisters were put through the UCI Rowland Blake Lab’s gas chromatograph mass spectrometer, which identifies different gasses and quantifies their concentrations. Elevated values of toluene were found in the winter as compared to the summer in the Imperial Valley, with the town of Brawley having the most elevated amounts in the air. Excel and QGIS were utilized to analyze data trends. Additionally, a backward trajectory calculated using the NOAA HYSPLIT model revealed the general air flow on days exhibiting high toluene concentrations. Here we suggest Long Beach may be a source of enhanced toluene levels in Brawley. Both areas exhibited enhanced levels of toluene with slightly lower concentrations observed in Brawley. We additionally observed other VOCs commonly emitted in urban areas, and saw a similar decrease in gasses from Long Beach to Brawley. This trend may indicate transport of toluene from Long Beach to Brawley. Further research could be done to investigate the potential for other regions that may contribute to high toluene concentrations in Brawley. My study contributes valuable insights to the poor air quality in the Imperial Valley, providing a foundation for future studies on how residents are specifically being affected.
      Ella Erskine
      Characterizing Volatile Organic Compound (VOC) Emissions from Surface Expressions of the Salton Sea Geothermal System (SSGS)
      Ella Erskine, Tufts University
      At the southeastern end of the Salton Sea, surface expressions of an active geothermal system are emitting an assemblage of potentially toxic and tropospheric ozone-forming gasses. Gas measurements were taken from ~1 to 8 ft tall mud cones, called gryphons, in the Davis-Schrimpf seep field (~50,000 ft2). The gaseous compounds emitted from the gryphons were collected using whole air sampling canisters. The canisters were then sent to the Rowland-Blake laboratory for analysis using gas chromatography techniques. Samples from June of 2022, 2023, and 2024 were utilized for a time-series analysis of VOC distribution. Originally, an emission makeup similar to petroleum was expected, as it has previously been found in some of the seeps. It is thought that hydrothermal fluid can rapidly mature organic matter into hydrothermal petroleum, so it is logical that the emission makeup could be similar. However, unexpectedly high levels of the VOC benzene were recorded, unlike concentrations generally observed in crude oil emissions. This may indicate a difference between the two sources in regard to their formation process or parent material composition. A possible cause of the elevated benzene could be its relatively high aqueous solubility compared to other hydrocarbons, which could allow it to be more readily incorporated into the hydrothermal fluid. Since the gryphons attract almost daily visitors, it is important to quantify their human health effects. Benzene harms the bone marrow, which can result in anemia. It is also a carcinogen. Additionally, benzene can react with the OH radical to form ozone, an additional health hazard. Future studies should revisit the Davis-Schrimpf field to continue the time series analysis and collect samples of the water seeps. Additionally, drone and ground studies should be conducted in the geothermal power plant adjacent to the gryphons to determine if benzene is being emitted from drilling activities.
      Amelia Brown
      Airborne and Ground-Based Analysis of Los Angeles County Landfill Gas Emissions
      Amelia Brown, Hamilton College
      California has the highest number of landfills of any individual US state. These landfills are concentrated in densely populated areas of California, especially within the Los Angeles metropolitan area. Landfills produce three main byproducts: heat, leachate, and landfill gas (LFG). LFG is primarily composed of methane (CH₄) and carbon dioxide (CO₂), with small concentrations of volatile organic compounds (VOCs) and other trace gases. The CH4 and CO2 components of LFG are well documented, but the VOCs and trace gases in LFG remain underexplored. This study investigates the emission of trace gases from four landfills in Los Angeles County, with a particular focus on substances known to have high Ozone Depletion Potentials (ODPs) and Global Warming Potentials (GWPs). The four landfills sampled were Chiquita Canyon Landfill, Lopez Canyon Landfill, Sunshine Canyon Landfill, and Toyon Canyon Landfill. Airborne samples were taken above the four landfills and ground samples were taken at Lopez Canyon as this was the only site accessible by our research team. The substances of interest were chlorofluorocarbons (CFCs), hydrochlorofluorocarbons (HCFCs), hydrofluorocarbons (HFCs), and halons. Airborne CH4 and CO2 measurements over the four landfills were obtained using the Picarro instrument onboard NASA’s B-200 aircraft. Ground samples were collected using whole air sampling canisters and were analyzed to determine the concentrations of these gases. The analytical approach for the ground samples combined Gas Chromatography-Mass Spectrometry (GCMS) with Flame Ionization Detection (FID) and Mass Selective Detection (MSD), providing a comprehensive profile of the emitted compounds. Findings reveal elevated levels of substances with high ODP and GWP, which were banned under the Montreal Protocol of 1987 and its subsequent amendments due to their contributions to stratospheric ozone depletion and climate change. These results underscore the importance of monitoring and mitigating landfill gas emissions, particularly for those containing potent greenhouse gases and ozone-depleting substances.


      Click here watch the Atmospheric Aerosols Group presentations.
      Click here watch the Terrestrial Ecology Group presentations.
      Click here watch the Ocean Group presentations.

      Return to 2024 SARP West Closeout Share
      Details
      Last Updated Sep 25, 2024 Related Terms
      General View the full article
    • By Space Force
      SPoC and DAF senior leaders came together to discuss exercising for Great Power Competition during a panel at Air, Space and Cyber Conference.

      View the full article
    • By NASA
      4 Min Read NASA Data Helps Protect US Embassy Staff from Polluted Air
      This visualization of aerosols shows dust (purple), smoke (red), and sea salt particles (blue) swirling across Earth’s atmosphere on Aug. 23, 2018, from NASA’s GEOS-FP (Goddard Earth Observing System forward processing) computer model. Credits:
      NASA’s Earth Observatory United States embassies and consulates, along with American citizens traveling and living abroad, now have a powerful tool to protect against polluted air, thanks to a collaboration between NASA and the U.S. State Department.
      Since 2020, ZephAir has provided real-time air quality data for about 75 U.S. diplomatic posts. Now, the public tool includes three-day air quality forecasts for PM2.5, a type of fine particulate matter, for all the approximately 270 U.S. embassies and consulates worldwide. These tiny particles, much smaller than a grain of sand, can penetrate deep into the lungs and enter the bloodstream, causing respiratory and cardiovascular problems.
      “This collaboration with NASA showcases how space-based technology can directly impact lives on the ground,” said Stephanie Christel, climate adaptation and air quality monitoring program lead with the State Department’s Greening Diplomacy Initiative. “This is not something the State Department could have done on its own.” For instance, placing air quality monitors at all U.S. diplomatic posts is prohibitively expensive, she explained.
      “NASA’s involvement brings not only advanced technology,” she added, “but also a trusted name that adds credibility and reliability to the forecasts, which is invaluable for our staff stationed abroad.”
      The forecasts, created using NASA satellite data, computer models, and machine learning, are crucial for U.S. embassies and consulates, where approximately 60,000 U.S. citizens and local staff work. Many of these sites are in regions with few local air quality monitors or early warning systems for air pollution.
      “ZephAir’s new forecasting capability is a prime example of NASA’s commitment to using our data for societal benefit,” said Laura Judd, an associate program manager for Health and Air Quality at NASA. “Partnering with the State Department allows us to extend the reach of our air quality data, providing embassies and local communities worldwide with vital information to protect public health.”
      Enhancing Health, Safety with NASA Air Quality Data
      To manage air pollution exposure, the tool can assist diplomatic staff with decisions on everything from building ventilation to outdoor activities at embassy schools.
      For many embassies, especially in regions with severe air pollution, having reliable air quality forecasts is crucial for safeguarding staff and their families, influencing both daily decisions and long-term planning. “Air quality is a top priority for my family as we think about [our next assignment], so having more information is a huge help,” said Alex Lewis, a political officer at the U.S. embassy in Managua, Nicaragua.
      A screenshot of the ZephAir web dashboard featuring air quality forecasts for Managua, Nicaragua. U.S. Department of State Previously, ZephAir only delivered data on current PM2.5 levels using air quality monitors on the ground from about 75 U.S. diplomatic locations and about 50 additional sources. Now, the enhanced tool provides PM2.5 forecasts for all sites, using the Goddard Earth Observing System forward processing (GEOS-FP), a weather and climate computer model. It incorporates data on tiny particles or droplets suspended in Earth’s atmosphere called aerosols from MODIS (Moderate-resolution Imaging Spectroradiometer) on NASA’s Terra and Aqua satellites.
      Aerosols are tiny airborne particles that come from both natural sources, like dust, volcanic ash, and sea spray, and from human activities, such as burning fossil fuels. PM2.5 refers to particles or droplets that are 2.5 micrometers or smaller in diameter — about 30 times smaller than the width of a human hair.
      “We use the GEOS-FP model to generate global aerosol forecasts,” said Pawan Gupta, of NASA’s Goddard Space Flight Center in Greenbelt, Maryland, and the lead scientist on the project. “Then we calibrate the forecasts for embassy locations, using historical data and machine learning techniques.”
      As of August 2024, the forecasting feature is available on the ZephAir web and mobile platforms.
      The new forecasts are about more than just protecting U.S. citizens and local embassy staff; they are also contributing to global action on air quality. The State Department engages with local governments and communities to raise awareness about air quality issues. “These forecasts are a critical part of our strategy to mitigate the impacts of air pollution not only for our personnel but also for the broader community in many regions around the world,” Christel said.
      Officials with the Greening Diplomacy Initiative partnered with NASA through the Health and Air Quality Applied Sciences Team  to develop the new forecasts and will continue the collaboration through support from the Satellite Needs Working Group.
      Looking ahead, the team aims to expand ZephAir’s capabilities to include ground-level ozone data, another major pollutant that can affect the health of embassy staff and local communities.
      By Emily DeMarco
      NASA’s Earth Science Division, Headquarters
      Share








      Details
      Last Updated Sep 20, 2024 Editor Rob Garner Contact Rob Garner rob.garner@nasa.gov Location Goddard Space Flight Center Related Terms
      Aqua Benefits Back on Earth Earth Earth’s Atmosphere Goddard Space Flight Center Terra View the full article
    • By NASA
      1 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA Glenn Research Center’s Frank Kaufhold discuses next-generation technologies for turbofan engines with the public during EAA AirVenture. Credit: NASA/Andrew Carlsen  The first “A” in NASA stands for aeronautics, and NASA’s Glenn Research Center helped bring that message to thousands of people at major airshows in Wisconsin and Ohio this summer. 
      In July, NASA Glenn subject matter experts and outreach professionals landed in Oshkosh, Wisconsin, to participate in EAA AirVenture Oshkosh 2024. Thousands of aircraft arrived at Wittman Regional Airport in Oshkosh and other airports in east-central Wisconsin to attend the event.
      Under the large NASA tent, staff shared information on both agencywide and center-specific projects, missions, and technology. NASA Glenn employees also assisted NASA Administrator Bill Nelson through tours and presentations.  
      NASA Glenn Research Center’s Amber Waid, left, discusses the wing-like shape of the truss of the X-66 Sustainable Flight Demonstrator with NASA Administrator Bill Nelson during EAA AirVenture. Credit: NASA/Andrew Carlsen  Over Labor Day weekend, NASA Glenn’s experts traveled down the road to the Cleveland National Air Show at Burke Lakefront Airport. A main attraction, NASA Glenn’s newest aircraft — the Pilatus PC-12 — garnered enthusiasm from visitors who met NASA’s aircrew and learned about how this aircraft helps test innovative communications technology.
      NASA Glenn Research Center interns Nikhita Kalluri, left, and Divya Nagireddy share fun facts about NASA and aviation with guests at the Cleveland National Air Show. Credit: NASA  Inside the NASA tent, guests experienced virtual reality simulators, watched wind tunnel demonstrations, and learned about Quesst, NASA’s mission to make quiet, faster-than-sound air travel a reality.   
      NASA Glenn Research Center’s research pilot James Demers talks with guests about airplanes and flight research at the Cleveland National Air Show. Credit: NASA  Return to Newsletter Explore More
      1 min read Students Soar at NASA Glenn’s Aviation Day
      Article 3 mins ago 1 min read Ohio State Fairgoers Learn About NASA Technologies
      Article 4 mins ago 1 min read Dr. Kenyon Makes Calls, On and Off the Field
      Article 4 mins ago View the full article
  • Check out these Videos

×
×
  • Create New...