Jump to content

Meet the Women Launching, Recovering Artemis Missions 


Recommended Posts

  • Publishers
Posted
A photo collage of the women of Artemis and Liliana Villarreal.
NASA/Kim Shiflett and Isaac Watson

In celebration of Women’s History Month, NASA highlights the multifaceted group of women behind the launch and recovery efforts for Artemis missions. They are a driving force in preparing and planning for crewed missions and are helping inspire the next generation of space explorers – the Artemis Generation. 

On the left is Artemis Launch Director Charlie Blackwell-Thompson and some of the women of the launch team wearing green to symbolize they are “go” for launch. As the agency prepares to return to the Moon under Artemis, the teams in the launch control center at NASA’s Kennedy Space Center in Florida are responsible for launching the SLS (Space Launch System) rocket and Orion spacecraft. The team consists of about 30% women, in contrast to when there was only one woman sitting on launch console during the Apollo 11 Moon landing mission.  

On the right is Artemis Landing and Recovery Director Lili Villarreal during Underway Recovery Test-11. This most recent recovery test marked the first time teams and the Artemis II astronauts practiced the procedures and operations they will undergo after Orion splashes down in the Pacific Ocean at the end of the Artemis II test flight.  

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Credit: NASA Following an international signing ceremony Thursday, NASA congratulated Norway on becoming the latest country to join the Artemis Accords, committing to the peaceful, transparent, and responsible exploration of space.
      “We’re grateful for the strong and meaningful collaboration we’ve already had with the Norwegian Space Agency,” said acting NASA Administrator Janet Petro. “Now, by signing the Artemis Accords, Norway is not only supporting the future of exploration, but also helping us define it with all our partners for the Moon, Mars, and beyond.”
      Norway’s Minster of Trade and Industry Cecilie Myrseth signed the Artemis Accords on behalf of the country during an event at the Norwegian Space Agency (NOSA) in Oslo. Christian Hauglie-Hanssen, director general of NOSA, and Robert Needham, U.S. Embassy Chargé d’Affaires for Norway, participated in the event. Petro contributed remarks in a pre-recorded video message.
      “We are pleased to be a part of the Artemis Accords,” said Myrseth. “This is an important step for enabling Norway to contribute to broader international cooperation to ensure the peaceful exploration and use of outer space.”
      In 2020, the United States, led by NASA and the U.S. Department of State, and seven other initial signatory nations established the Artemis Accords, the first set of practical guidelines for nations to increase safety of operations and reduce risk and uncertainty in their civil exploration activities.
      The Artemis Accords are grounded in the Outer Space Treaty and other agreements including the Registration Convention and the Rescue and Return Agreement, as well as best practices for responsible behavior that NASA and its partners have supported, including the public release of scientific data. 
      Learn more about the Artemis Accords at:
      https://www.nasa.gov/artemis-accords
      -end-
      Amber Jacobson / Elizabeth Shaw
      Headquarters, Washington
      202-358-1600
      amber.c.jacobson@nasa.gov / elizabeth.a.shaw@nasa.gov
      Share
      Details
      Last Updated May 15, 2025 EditorJessica TaveauLocationNASA Headquarters Related Terms
      Artemis Accords Office of International and Interagency Relations (OIIR) View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Christine Braden values new experiences that broaden her perspective; a mindset that has guided her 26-year career at NASA’s Johnson Space Center in Houston, where she currently serves as a senior systems engineer in the Commercial Low Earth Orbit Development Program. In her role, Braden works with engineering teams to develop commercial space stations that will prioritize the safety of astronauts while maximizing cost-effectiveness and the scientific research capabilities onboard. 

      Managed by NASA’s Space Operations Mission Directorate, the program supports the development of commercially owned and operated space stations in low Earth orbit from which the agency, along with other customers, can purchase services and stimulate the growth of commercial activities in space. Designing and developing these space stations is the first step of NASA’s two-phase approach, enabling the agency to certify stations and procure services as one of many customers.

      With a bachelor’s degree in Technical Management from Embry-Riddle Aeronautical University, Braden brings a strong engineering foundation to her work. However, her role unique because it allows her to merge technical expertise with her creative instincts. 

      “My team must think outside the box to define new ways that ensure that the commercial providers’ technical integrations, requirements, development, and operations are designed to the highest degree possible,” said Braden.

      Recently, she proposed a certification and systems engineering architecture that redefines how companies will interface with NASA and each other in an evolving landscape. Braden’s hybrid approach strikes a balance, allowing companies to innovate while favoring shared assurance and accountability. It also gives NASA situational awareness of the companies’ design, tests, mission, and operational approaches. As a result of her efforts, Braden was recognized with an “On the Spot” award.

      Christine Braden receives an “On the Spot” award from Angela Hart, program manager for NASA’s Commercial Low Earth Orbit Development Program, in March 2024.NASA/Helen Arase Vargas
      Looking ahead, Braden envisions a world where commercial space stations are a hub for science and technology, spacecraft are more efficient, spaceflight is more accessible, humans are back on the Moon, and Mars is the next frontier. In reflecting on these agency-wide goals, Braden finds that working with passionate team members makes her day-to-day work truly special and enjoyable.

      “I am a part of a small, close-knit team that works together to make these advancements in space exploration happen for the world,” said Braden. “Working at NASA is a once-in-a-lifetime opportunity that not only defines my working life going forward but also provides me with an experience I can share with some truly amazing people.” 
      Working at NASA is a once-in-a-lifetime opportunity that not only defines my working life going forward but also provides me with an experience I can share with some truly amazing people.
      Christine Braden
      Senior Systems Engineer, Commercial Low Earth Orbit Development Program

      Outside of work, Braden is inspired by her faith, which encourages her to see things from new perspectives and try to understand people from all walks of life. Additionally, Braden is a lifelong learner who loves listening to podcasts, watching documentaries, and reading web articles. She is eager to learn everything from music and dance to plants and animals. 

      “When I look through scientific websites where new planets and galaxies are discovered, it makes me think of ways humanity may expand itself to the stars, and ways that we can preserve the life we have here on Earth,” said Braden.

      On the topic of preservation, one of Braden’s many hobbies is antique restoration. “It reminds me of my dad and grandfather restoring homes together during my childhood and gives me hope that I can inspire my children as they watch me follow in our family’s footsteps,” said Braden. Her other hobbies include gardening and family activities such as puzzles, board games, watching television, playing video games, hunting, and traveling.

      As a driven individual known for her creativity and curiosity, Braden’s fresh ideas and spirit are key in guiding the agency’s progress into new frontiers. 

      NASA’s Space Operations Mission Directorate maintains a continuous human presence in space for the benefit of people on Earth. The programs within the directorate are the hub of NASA’s space exploration efforts, enabling Artemis, commercial space, science, and other agency missions through communication, launch services, research capabilities, and crew support.

      To learn more about NASA’s Space Operation Mission Directorate, visit: 
      https://www.nasa.gov/directorates/space-operations
      Share
      Details
      Last Updated May 15, 2025 Related Terms
      Space Operations Mission Directorate Explore More
      4 min read NASA Enables SPHEREx Data Return Through Commercial Partnership
      Article 1 week ago 4 min read Meet the Space Ops Team: Becky Brocato
      Article 4 weeks ago 3 min read Meet the Space Ops Team: Anum Ashraf
      Article 2 months ago Keep Exploring Discover Related Topics
      Humans In Space
      International Space Station
      Commercial Space
      NASA Directorates
      View the full article
    • By NASA
      NASA Glenn Research Center senior materials research engineer Kim de Groh, who conducted research for Hubble Space Telescope servicing missions, shared her experiences during a presentation at Great Lakes Science Center, home of the NASA Glenn Visitor Center, in Cleveland on Thursday, May 8, 2025. Credit: NASA/Dennis Brown  April 24 marked the 35th anniversary of the launch of NASA’s Hubble Space Telescope. The iconic space observatory remains a household name —the most well-recognized and scientifically productive telescope in history. Engineers at NASA’s Glenn Research Center in Cleveland played a significant role in how the telescope functions today.  
      NASA’s Glenn Research Center researchers Kim de Groh, left, and Joyce Dever conducted research for Hubble Space Telescope servicing missions. De Groh shared her experiences during a presentation at Great Lakes Science Center, home of the NASA Glenn Visitor Center, in Cleveland on Thursday, May 8, 2025. Credit: NASA/Sara Lowthian-Hanna  NASA Glenn researchers assisted in all five Hubble servicing missions by testing damaged insulation, determining why it degraded in space, and recommending replacement materials.  
      One of those researchers, Kim de Groh, senior materials research engineer, shared some of that research in a special presentation at Great Lakes Science Center, home of the NASA Glenn Visitor Center, in Cleveland on May 8. She chronicled her Hubble experience with a presentation, a show-and-tell with samples directly from the telescope, and a Q&A addressing the audience’s Hubble-related questions. 
      Return to Newsletter Explore More
      1 min read NASA Glenn Hosts Slovenian Delegation and Ohio Governor’s Office
      Article 48 seconds ago 1 min read Specialty NASA Glenn License Plates Available  
      Article 1 min ago 1 min read NASA Glenn Shows Students Temperature-Cooling Technology
      Article 2 mins ago View the full article
    • By NASA
      Teams at NASA’s Michoud Assembly Facility in New Orleans move a liquid hydrogen tank for the agency’s SLS (Space Launch System) rocket into the factory’s final assembly area on April 22, 2025. The propellant tank is one of five major elements that make up the 212-foot-tall rocket stage. NASA/Steven Seipel NASA completed another step to ready its SLS (Space Launch System) rocket for the Artemis III mission as crews at the agency’s Michoud Assembly Facility in New Orleans recently applied a thermal protection system to the core stage’s liquid hydrogen tank.
      Building on the crewed Artemis II flight test, Artemis III will add new capabilities with the human landing system and advanced spacesuits to send the first astronauts to explore the lunar South Pole region and prepare humanity to go to Mars. Thermal protection systems are a cornerstone of successful spaceflight endeavors, safeguarding human life, and enabling the launch and controlled return of spacecraft.
      The tank is the largest piece of SLS flight hardware insulated at Michoud. The hardware requires thermal protection due to the extreme temperatures during launch and ascent to space – and to keep the liquid hydrogen at minus 423 degrees Fahrenheit on the pad prior to launch.
      “The thermal protection system protects the SLS rocket from the heat of launch while also keeping the thousands of gallons of liquid propellant within the core stage’s tanks cold enough. Without the protection, the propellant would boil off too rapidly to replenish before launch,” said Jay Bourgeois, thermal protection system, test, and integration lead at NASA Michoud. “Thermal protection systems are crucial in protecting all the structural components of SLS during launch and flight.”
      In February, Michoud crews with NASA and Boeing, the SLS core stage prime contractor, completed the thermal protection system on the external structure of the rocket’s liquid hydrogen propellant fuel tank, using a robotic tool in what is now the largest single application in spaceflight history. The robotically controlled operation coated the tank with spray-on foam insulation, distributing 107 feet of the foam to the tank in 102 minutes. When the foam is applied to the core stage, it gives the rocket a canary yellow color. The Sun’s ultraviolet rays naturally “tan” the thermal protection, giving the SLS core stage its signature orange color, like the space shuttle external tank.
      Having recently completed application of the thermal protection system, teams will now continue outfitting the 130-foot-tall liquid hydrogen tank with critical systems to ready it for its designated Artemis III mission. The core stage of SLS is the largest ever built by length and volume, and was manufactured at Michoud using state-of-the-art manufacturing equipment. (NASA/Steven Seipel) While it might sound like a task similar to applying paint to a house or spraying insulation in an attic, it is a much more complex process. The flexible polyurethane foam had to withstand harsh conditions for application and testing. Additionally, there was a new challenge: spraying the stage horizontally, something never done previously during large foam applications on space shuttle external tanks at Michoud. All large components of space shuttle tanks were in a vertical position when sprayed with automated processes.
      Overall, the rocket’s core stage is 212 feet with a diameter of 27.6 feet, the same diameter as the space shuttle’s external tank. The liquid hydrogen and liquid oxygen tanks feed four RS-25 engines for approximately 500 seconds before SLS reaches low Earth orbit and the core stage separates from the upper stage and NASA’s Orion spacecraft.
      “Even though it only takes 102 minutes to apply the spray, a lot of careful preparation and planning is put into this process before the actual application of the foam,” said Boeing’s Brian Jeansonne, the integrated product team senior leader for the thermal protection system at NASA Michoud. “There are better process controls in place than we’ve ever had before, and there are specialized production technicians who must have certifications to operate the system. It’s quite an accomplishment and a lot of pride in knowing that we’ve completed this step of the build process.”
      The core stage of SLS is the largest NASA has ever built by length and volume, and it was manufactured at Michoud using state-of-the-art manufacturing equipment. Michoud is a unique, advanced manufacturing facility where the agency has built spacecraft components for decades, including the space shuttle’s external tanks and Saturn V rockets for the Apollo program.
      Through Artemis, NASA will send astronauts to explore the Moon for scientific discovery, economic benefits, and build the foundation for the first crewed missions to Mars.
      For more information on the Artemis Campaign, visit:
      https://www.nasa.gov/feature/artemis/
      News Media Contact
      Jonathan Deal
      Marshall Space Flight Center, Huntsville, Ala. 
      256-544-0034 
      jonathan.e.deal@nasa.gov
      View the full article
    • By NASA
      As NASA partners with American industry to deliver science and technology payloads to the Moon, a dedicated team behind the scenes ensures every mission is grounded in strategy, compliance, and innovation. Leading that effort is Aubrie Henspeter, who advises all aspects of procurement for NASA’s Commercial Lunar Payload Services (CLPS) initiative—one of the cornerstone projects supporting the Artemis campaign. 
      Official portrait of Aubrie Henspeter. NASA/Bill Stafford With 20 years at NASA, Henspeter brings multifaceted experience to her role as CLPS procurement team lead in the Lunar & Planetary Exploration Procurement Office at Johnson Space Center in Houston. Her job is equal parts problem-solving, mentoring, and strategizing—all focused on enabling commercial partners to deliver NASA payloads to the lunar surface faster, more affordably, and more efficient than ever before. 
      “It’s been a great experience to see the full lifecycle of a project—from soliciting requirements to launching to the Moon,” said Henspeter. “We work to continuously adjust as the lunar industry grows and improve procurement terms and conditions by incorporating lessons learned.” 
      Henspeter leads a team of six contracting officers and contract specialists, managing workload priorities and supporting the continuity of seven commercial missions currently on contract. She also helps shape upcoming contract opportunities for future lunar deliveries, constantly seeking creative procurement strategies within a commercial firm-fixed-price framework. 
      NASA launched the CLPS initiative in 2018 to create a faster, more flexible way to partner with commercial companies for lunar deliveries. Thirteen vendors are participating as part of a multi-award contract, each eligible to compete for individual task orders to deliver NASA science and technology payloads to the Moon. These deliveries support Artemis goals by enabling new discoveries, testing key technologies, and preparing for long-term human exploration on the lunar surface. 
      Aubrie Henspeter receives the 2023 JSC Director’s Commendation Award from NASA Acting Associate Administrator Vanessa Wyche, right, and Johnson Space Center’s Acting Director Steve Koerner, far left, joined by her sons Elijah and Malik Merrick.NASA/James Blair  In May 2023, Henspeter received the NASA Exceptional Service Medal for her leadership on CLPS from 2018–2023. For her, the recognition reflects the team’s spirit and collaboration. 
      “I genuinely enjoy working on this project because of its lean, adaptable approach and the amazing team involved,” she said. “When all of us across NASA work together we are the most successful and can achieve our mission.” 
      That sense of collaboration and adaptability has shaped many of the insights Henspeter has gained throughout her career—lessons she now applies daily to help the team stay aligned and prepared. 
      One of those key lessons: always keep the contract current. 
      “It’s all good until it isn’t, and then everyone asks—what does the contract say?” she said. “Open communication and up-to-date documentation, no matter how minor the change, are essential.” 
      Over the course of her career, Henspeter has learned to prioritize preparation, adaptability, and strong working relationships. 
      “Preparation in procurement is conducting thorough market research, understanding the regulations, finding the gray areas, and developing a strategy that best meets the customer’s needs,” she said. “Adaptability means staying committed to the goal while remaining open and flexible on how to get there.” 
      That philosophy has helped her navigate everything from yearlong international contract negotiations with foreign partners to pivoting a customer from a sole-source request to a competitive procurement that ultimately saved costs and expanded opportunity. 
      “NASA is full of brilliant people, and it can be challenging to present alternatives. But through clear communication and data-driven recommendations, we find solutions that work,” Henspeter said. 
      NASA’s Commercial Lunar Payload Services (CLPS) team members at Kennedy Space Center in Florida for the launch of Firefly’s Blue Ghost Mission 1, including Aubrie Henspeter (second from left) and teammates Joshua Smith, LaToya Eaglin, Catherine Staggs, Shayla Martin, Tasha Beasley, Jennifer Ariens, Derek Maggard, and guests. As she looks to the Artemis Generation, Henspeter hopes to pass along a deep respect for teamwork and shared purpose. 
      “Every contribution matters. Whether it seems big or small, it makes a difference in achieving our mission,” she said. “I take pride in my role and in being part of the NASA team.” 
      Explore More
      2 min read NASA Expands Youth Engagement With New Scouting America Agreement
      Article 6 days ago 5 min read NASA Progresses Toward Crewed Moon Mission with Spacecraft, Rocket Milestones
      Article 7 days ago 5 min read Nilufar Ramji: Shaping Johnson’s Giant Leaps Forward 
      Article 1 week ago View the full article
  • Check out these Videos

×
×
  • Create New...