Jump to content

Recommended Posts

Posted
low_STSCI-H-p0429a-k-1340x520.png

Four hundred years ago, sky watchers, including the famous astronomer Johannes Kepler, were startled by the sudden appearance of a "new star" in the western sky, rivaling the brilliance of the nearby planets. Now, astronomers using NASA's three Great Observatories are unraveling the mysteries of the expanding remains of Kepler's supernova, the last such object seen to explode in our Milky Way galaxy.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Explore This Section Science Uncategorized Helio Highlights: May… Home Framework for Heliophysics Education About Helio Big Idea 1.1 Helio Big Idea 1.2 Helio Big Idea 1.3 Helio Big Idea 2.1 Helio Big Idea 2.2 Helio Big Idea 2.3 Helio Big Idea 3.1 Helio Big Idea 3.2 Helio Big Idea 3.3 Helio Missions Helio Topics Resource Database About NASA HEAT More Highlights Space Math   3 min read
      Helio Highlights: May 2025
      3 Min Read Helio Highlights: May 2025
      A satellite image showing the extent of the Northern Lights during part of the Mother’s Day 2024 solar storms. Credits:
      NOAA One year ago, solar storms lit up the night sky. Why?
      The Sun is 93 million miles away from Earth, on average. Even though it’s far away, we can still see and feel its effects here. One of the most beautiful effects are the auroras – colorful lights that dance across the sky near the North and South Poles. These are also called the Northern and Southern Lights. They happen when tiny particles from the Sun hit gas molecules in our atmosphere and give off energy.
      Sometimes the Sun becomes very active and sends out a lot more energy than normal. When this happens, we can see auroras in places much farther from the poles than normal. In May 2024, around Mother’s Day, the Sun sent powerful solar storms in the direction of Earth. These storms were also called the Gannon Storms, named after Jennifer Gannon, a scientist who studied space weather. The Northern Lights could be seen as far south as Puerto Rico, Hawaii, Mexico, Jamaica, and the Bahamas. The Southern Lights were also visible as far north as South Africa and New Zealand.
      Aurora Borealis seen from British Columbia, Canada on May 10, 2024. NASA/Mara Johnson-Groh Scientists who study the Sun and its effects on our solar system work in a field called heliophysics. Their studies of the Sun have shown that it goes through cycles of being more active and less active. Each one of these cycles lasts about 11 years, but can be anywhere from 8 to 14 years long. This is called the Solar Cycle.
      The middle of each cycle is called Solar Maximum. During this time, the Sun has more dark spots (called sunspots) and creates more space weather events. The big storms in May 2024 happened during the Solar Maximum for Solar Cycle 25.
      On May 8 and 9, 2024, an active area on the Sun called AR3664 shot out powerful solar flares and several huge bursts of energy called coronal mass ejections (CMEs). These CMEs headed straight for Earth. The first CME pushed aside the normal solar wind, making a clear path for the others to reach us faster. When all this energy hit our atmosphere, it created auroras much farther from the poles than usual. It was like the Sun gave the auroras a huge power boost!
      Eruptions of Solar material into space as seen on May 7 (right) and May 8 (left), 2024. These types of eruptions often come just before a larger Coronal Mass Ejection (CME), including the ones which caused the Mother’s Day solar storms. NASA/SDO Auroras are beautiful to watch, but the space weather that creates them can also cause problems. Space weather can mess up radio signals, power grids, GPS systems, and satellites. During the May 2024 storms, GPS systems used by farmers were disrupted. Many farmers use GPS to guide their self-driving tractors. Since this happened during peak planting season, it may have cost billions of dollars in lost profit.
      Because space weather can cause so many problems, scientists at NASA and around the world watch the Sun closely to predict when these events will happen. You can help too! Join local science projects at schools, teach others about the Sun, and help make observations in your area. All of this helps us to learn more about the Sun and how it affects our planet.
      Here are some resources to connect you to the Sun and auroras
      Lesson Plans & Educator Guides
      Magnetic Mysteries: Sun-Earth Interactions
      A 5E lesson for high school students to investigate the question of what causes aurora by using Helioviewer to examine solar activity.


      Aurora Research and Heliophysics
      Learn about aurora, how they form, and the different phases they go through, as well as heliophysics missions that study them.


      How Earth’s Magnetic Field Causes Auroras
      A 5E middle school lesson where students explore why our planet has a magnetic field (and other planets don’t) and what it is like.


      Interactive Resources
      Magnetic Earth
      Introductory activity where users learn about the magnetic field that surrounds Earth and its role in creating the Northern Lights.


      NOAA Aurora
      30-Minute Forecast
      An interactive aurora map for both hemispheres which allows users to predict the likelihood of auroras at different latitudes.


      Webinars and Slide Decks
      Space Weather
      Basics
      A slide deck (41 slides) that offers an elementary introduction to the basic features of space weather and its interactions with Earth’s magnetosphere and various technologies.


      View the full article
    • By NASA
      NASA/JPL-Caltech/MSSS The United States flag adorns an aluminum plate mounted at the base of the mast, or “head,” of NASA’s Perseverance Mars rover. This image of the plate was taken on June 28, 2025 (the 1,548th day, or sol, of the mission), by the WATSON (Wide Angle Topographic Sensor for Operations and eNgineering) camera on the end of the rover’s robotic arm.
      WATSON, part of an instrument called SHERLOC (Scanning Habitable Environments with Raman & Luminescence for Organics & Chemicals), was built by Malin Space Science Systems (MSSS) in San Diego and is operated jointly by MSSS and NASA’s Jet Propulsion Laboratory in Southern California. JPL, which is managed for the agency by Caltech, built and manages operations of the Perseverance rover.
      Learn more about Perseverance’s latest science.
      View the full article
    • By USH
      Since November 2024, strange blinking lights have been reported worldwide, an unexplained phenomenon that’s left many puzzled. MrMBB333 believes he may have found a connection. 

      Also known as electrical pollution, dirty electricity refers to high-frequency voltage spikes that ride along standard power lines. These rogue signals, forms of electromagnetic interference (EMI), can spread through our infrastructure, causing devices to glitch or behave unpredictably. 
      If this interference is appearing globally, the source might be something massive, possibly deep within Earth’s core. Rogue frequencies from the core could travel up and interact with power grids, solar systems, and transmission lines, triggering widespread anomalies. 
      Supporting this idea is a discovery from NASA’s ANITA project in Antarctica. While searching for cosmic neutrinos, scientists instead detected impossible radio signals rising from deep within Earth, signals that defy current physics.  
      According to current science, these waves should have been absorbed by the Earth’s crust long before reaching the detectors. But they weren’t. 
      When researchers checked their findings against other experiments, nothing lined up. This means they didn’t detect neutrinos, but something entirely unknown. Could this be a new kind of particle? A glitch in reality? Or something even stranger? 
      Although it is not known whether the strange radio signals detected deep beneath the Antarctic ice are related to the rogue signals believed to originate from Earth's core, MrMBB333 suggests there could be a connection. He proposes that similar forms of electromagnetic interference (EMI) might be disrupting global electronics and even contributing to the mysterious blinking light phenomenon. 
      Another possible factor at play is that the magnetic field is weakening as well as Solar Cycle 25 — the current 11-year cycle of solar activity marked by the Sun’s magnetic field reversal and increasing sunspot activity. This cycle began in December 2019 and is expected to reach its peak in 2025. 
      Therefore, could this solar phenomenon be interfering with the rogue electromagnetic signals from the Earth’s core are behind the strange blinking lights observed around the world? 
      If that’s the case, although I don’t recall the blinking light phenomenon ever appearing this intensely before, then the strange lights may begin to fade as Solar Cycle 25 winds down. Still, that doesn’t explain the origin of the mysterious radio signals rising from deep beneath Antarctica’s ice.
        View the full article
    • By NASA
      This NASA/ESA Hubble Space Telescope image features the barred spiral galaxy IC 758.ESA/Hubble & NASA, C. Kilpatrick This serene spiral galaxy hides a cataclysmic past. The galaxy IC 758, shown in this NASA/ESA Hubble Space Telescope image, is situated 60 million light-years away in the constellation Ursa Major.
      Hubble captured this image in 2023. IC 758 appears peaceful, with its soft blue spiral arms curving gently around its hazy barred center. However, in 1999, astronomers spotted a powerful explosion in this galaxy. The supernova SN 1999bg marked the dramatic end of a star far more massive than the Sun.
      Researchers do not know exactly how massive this star was before it exploded, but will use these Hubble observations to measure the masses of stars in SN 1999bg’s neighborhood. These measurements will help them estimate the mass of the star that went supernova. The Hubble data may also reveal whether SN 1999bg’s progenitor star had a companion, which would provide additional clues about the star’s life and death.
      A supernova represents more than just the demise of a single star — it’s also a powerful force that can shape its neighborhood. When a massive star collapses, triggering a supernova, its outer layers rebound off its shrunken core. The explosion stirs the interstellar soup of gas and dust out of which new stars form. This interstellar shakeup can scatter and heat nearby gas clouds, preventing new stars from forming, or it can compress them, creating a burst of new star formation. The cast-off layers enrich the interstellar medium, from which new stars form, with heavy elements manufactured in the core of the supernova.
      Text Credit: ESA/Hubble
      Image Credit: ESA/Hubble & NASA, C. Kilpatrick
      View the full article
    • By NASA
      Explore Hubble Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts Multimedia Images Videos Sonifications Podcasts e-Books Online Activities 3D Hubble Models Lithographs Fact Sheets Posters Hubble on the NASA App Glossary News Hubble News Social Media Media Resources More 35th Anniversary Online Activities 2 min read
      Hubble Studies a Spiral’s Supernova Scene
      This NASA/ESA Hubble Space Telescope image features the barred spiral galaxy IC 758. ESA/Hubble & NASA, C. Kilpatrick This serene spiral galaxy hides a cataclysmic past. The galaxy IC 758, shown in this NASA/ESA Hubble Space Telescope image, is situated 60 million light-years away in the constellation Ursa Major.
      Hubble captured this image in 2023. IC 758 appears peaceful, with its soft blue spiral arms curving gently around its hazy barred center. However, in 1999, astronomers spotted a powerful explosion in this galaxy. The supernova SN 1999bg marked the dramatic end of a star far more massive than the Sun.
      Researchers do not know exactly how massive this star was before it exploded, but will use these Hubble observations to measure the masses of stars in SN 1999bg’s neighborhood. These measurements will help them estimate the mass of the star that went supernova. The Hubble data may also reveal whether SN 1999bg’s progenitor star had a companion, which would provide additional clues about the star’s life and death.
      A supernova represents more than just the demise of a single star — it’s also a powerful force that can shape its neighborhood. When a massive star collapses, triggering a supernova, its outer layers rebound off its shrunken core. The explosion stirs the interstellar soup of gas and dust out of which new stars form. This interstellar shakeup can scatter and heat nearby gas clouds, preventing new stars from forming, or it can compress them, creating a burst of new star formation. The cast-off layers enrich the interstellar medium, from which new stars form, with heavy elements manufactured in the core of the supernova.
      Text Credit: ESA/Hubble
      Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contact:
      Claire Andreoli (claire.andreoli@nasa.gov)
      NASA’s Goddard Space Flight Center, Greenbelt, MD
      Share








      Details
      Last Updated Jun 13, 2025 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms
      Hubble Space Telescope Astrophysics Astrophysics Division Galaxies Goddard Space Flight Center Spiral Galaxies The Universe Keep Exploring Discover More Topics From Hubble
      Hubble Space Telescope


      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


      Hubble’s Galaxies



      Homing in on Cosmic Explosions



      Hubble’s Night Sky Challenge


      View the full article
  • Check out these Videos

×
×
  • Create New...