Jump to content

NASA Selects New Round of Candidates for CubeSat Missions to Station


NASA

Recommended Posts

  • Publishers
Image of University of Michigan students working on Measurement of Actuator Response and In Orbit (MARIO)
Students from the University of Michigan work on their Measurement of Actuator Response and In Orbit (MARIO) CubeSat which launched to the International Space Station in November 2022.
Photo credit: University of Michigan

NASA selected 10 small research satellites across eight states to fly to the International Space Station as part of the agency’s efforts to expand education and science opportunities, support technology advancement, and provide for workforce development.

These small satellites, or CubeSats, use a standard size and form measured in units. One unit (1U) is 10x10x11 centimeters and allows for the modular design of larger CubeSats measuring up to 12U. CubeSats encourage greater collaboration across government, industry, and academia because they are modular and inexpensive to build and launch. The small satellites allow for rapid development and provide a cost-effective means for science investigations and technology demonstrations in space.

This year’s selections include the first project from Delaware, three from minority serving institutions, and a submission from a K-12 school. New participants include the University of Delaware, Oakwood School in California, California State University, Long Beach, California State Polytechnic University, Pomona, and the University of Chicago.

Photo of Thomas Jefferson High School for Science and Technology’s Research and Education Vehicle that launched to the International Space Station
Thomas Jefferson High School for Science and Technology’s Research and Education Vehicle for Evaluating Radio Broadcasts (TJREVERB) launched to the International Space Station in November 2022.
Photo credit: Thomas Jefferson High School

NASA’s CubeSat Launch Initiative (CSLI) selected the missions, currently planned to launch in 2025 to 2028, in response to a call for proposals on Aug. 7, 2023.

The complete list of organizations and CubeSats chosen during CSLI 15th selection round are:

  • University of Louisiana at Lafayette – CAPE-Twiggs (Cajun Advanced Picosatellite Experiment) will serve as a first prototype of a 3U CubeSat designed to contain and launch tethered SlimSat modules into very low-Earth orbit. Having launched successful CubeSat missions in the past, the university’s current project will work with several other schools with little or no experience on the design, build, and operations of their own SlimSat module. CAPE-Twiggs will enhance both STEM education and the ability to conduct regular and collaborative space-based experiments on a larger scale.
  • Oakwood School in California – NyanSat is a 2U CubeSat designed and built by a K-12 independent school in rural California. This mission will serve as template for educational outreach and space technology development. NyanSat features several technology development payloads, each designed to test and demonstrate the efficacy of various new systems in the space environment. Included among these are the acoustic spacecraft mapping and sounding payload, aimed at simplifying sensor architectures in spacecraft and providing supplementary mission information, and the cryptographic ledgers in space payload, intended to verify the feasibility of space-based digital notaries for on-Earth and in-geospace transactions.
  • University of Hawaii at Manoa – CREPES (CubeSat Relativistic Electron and Proton Energy Separator) aims to study solar energetic particle events and increase our knowledge of the Sun. CREPES will fly a new type of micropattern gaseous detector using gas electron multipliers to amplify the signals of radiation. Data obtained from these measurements is expected to contribute to the understanding of space weather and development of space climatology. The University of Hawaii at Manoa is a minority serving institution and has previously launched a CubeSat with the program.
  • California State University, Long Beach – SharkSat-1 seeks to monitor LED-induced blue light pollution across Earth. LED lights are popular due to their cost efficiency, but their impacts are currently being studied by climate and health researchers. Data collected by SharkSat-1 will create a database for experts to create light pollution maps. California State University, Long Beach, is a minority serving institution.
  • University of Delaware – DAPPEr (Delaware Atmospheric Plasma Probe Experiment) will map average variations in electron density and temperature versus latitude and time of day in the ionosphere’s F2 layer. Another objective is to determine the preferred size for a Langmuir probe to measure ionospheric electrons from a CubeSat. This is the first CubeSat selection from Delaware for CSLI and aims to provide students with hands-on learning experiences on flight systems.
  • Saint Louis University – DARLA-02 (Demonstration of Artificial Reasoning, Learning, and Analysis) will demonstrate autonomous event response on a 3U spacecraft and create a dynamic map of the radio frequency background noise in the amateur ultra-high frequency band. DARLA-02 follows DARLA, which is targeted to launch with CSLI in 2024. This follow-up seeks to double the amount of time the spacecraft can be in science mode in orbit.
  • California State Polytechnic University, Pomona – The Pleiades Five mission will be the first to use a commoditized CubeSat architecture to provide effective and sustainable educational opportunities for future generations of the space industry. California State Polytechnic University, Pomona, will partner with five other universities and offer a pathway enabling students to design, test, launch, and operate a low-cost educational 1U CubeSat within one academic year. California State Polytechnic University, Pomona, is a minority serving institution.
  • University of Chicago – PULSE-A (Polarization modUlated Laser Satellite Experiment) will demonstrate a way to increase the speed of space-to-ground communications. PULSE-A also aims to make space-to-ground operations more difficult to intercept and jam through an on-orbit tech demonstration. PULSE-A will use 10 Mbps polarization-keyed laser communications instead of radio frequency for a space to Earth call. Free-space optical communications improves on power, bandwidth, and effective data transfer rates over radio frequency.
  • Utah State University – GASRATS (Get Away Special Radio and Antenna Transparency Satellite) will demonstrate a novel transparent patch antenna integrated on top of a solar panel. Having a dual-purpose use of the external surface of a satellite and combining power generation with communications capabilities, tackles the common space mission constraints of power and mass limitations. Utah State University has previously participated in CSLI, deploying GASPACS (Get Away Special Passive Attitude Control Satellite) in early 2022 to test inflatable structures in space.
  • NASA’s Marshall Space Flight Center – GPDM (Green Propulsion Dual Mode) will test chemical and electrospray capability of the low-toxicity or “green” rocket propellant known as Advanced Spacecraft Energetic Non-Toxic (ASCENT) during an in-space flight demonstration. The project is a partnership with the Massachusetts Institute of Technology and Georgia Institute of Technology to develop a chemical propulsion subsystem that will include a 3D printed tank, manifold, and propellant management device.

NASA has selected CubeSat missions from 45 states, the District of Columbia, and Puerto Rico, and launched about 160 CubeSats into space on an ELaNa (Educational Launch of a Nanosatellite) manifest.

The CubeSat Launch Initiative is managed by NASA’s Launch Services Program based at the agency’s Kennedy Space Center in Florida. For more information about CSLI, visit:

https://go.nasa.gov/CubeSat_initiative

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Unable to render the provided source NASA invites the public to virtually sail along with the Advanced Composite Solar Sail System‘s space journey using NASA’s “Eyes on the Solar System” visualization tool, a digital model of the solar system. This simulation shows the real-time positions of the planets, moons, and spacecraft – including NASA’s Advanced Composite Solar Sail System.
      Solar sails use the pressure of sunlight for propulsion, angling toward or away from the Sun so that photons bounce off the reflective sail to push a spacecraft. This eliminates the need for heavy propulsion systems and could enable longer duration and lower cost missions. The results from this technology demonstration – including the test of the sail’s composite boom system – will advance future space exploration to expand our understanding of our Sun and solar system. 
      The Advanced Composite Solar Sail System, which launched in April 2024, and deployed its reflective sail in August, is currently orbiting approximately 600 miles (1,000 kilometers) above Earth and is frequently visible in the night sky to observers in the Northern Hemisphere. Fans of the spacecraft can look for the sail in the night sky using a new feature in the NASA mobile app. Visibility may be intermittent, and the spacecraft could appear at variable levels of brightness as it moves in orbit.
      For more mission updates, follow NASA’s Small Satellite Missions blog.
      NASA’s Ames Research Center in California’s Silicon Valley, manages the Advanced Composite Solar Sail System project and designed and built the onboard camera diagnostic system. NASA Langley designed and built the deployable composite booms and solar sail system. NASA’s Small Spacecraft Technology (SST) program office based at NASA Ames and led by the agency’s Space Technology Mission Directorate (STMD), funds and manages the mission. NASA STMD’s Game Changing Development program funded the development of the deployable composite boom technology.    
      View the full article
    • By NASA
      Credit: NASA NASA has selected Metis Technology Solutions Inc. of Albuquerque, New Mexico, to provide engineering services as well as develop and maintain software and hardware used to conduct simulations for aerospace research and development across the agency.
      The Aerospace Research, Technology, and Simulations (ARTS) contract is a hybrid cost-plus-fixed-fee and firm-fixed-price contract with an indefinite-delivery/indefinite-quantity component and has a maximum potential value of $177 million. The performance period begins Sunday, Dec. 1, 2024, with a one-year base period, and options to extend performance through November 2029.
      Under this contract, the company will support the preparation, development, operation, and maintenance of future and existing simulators, integration laboratories, aircraft research systems, simulation work areas, and aircraft research systems. The scope of work also will include the development, testing, and validation of advanced air traffic management automation tools, including, but not limited to, advanced concepts for aviation ecosystems. Work will primarily be performed at NASA’s Ames Research Center in California’s Silicon Valley and NASA’s Langley Research Center in Hampton, Virginia, as well as other agency or government locations, as needed.
      For information about NASA and agency programs, visit:
      https://www.nasa.gov
      -end-
      Tiernan Doyle
      Headquarters, Washington
      202-358-1600
      tiernan.doyle@nasa.gov
      Rachel Hoover
      Ames Research Center, Silicon Valley, Calif.
      650-604-4789
      rachel.hoover@nasa.gov
      Share
      Details
      Last Updated Oct 10, 2024 LocationNASA Headquarters Related Terms
      Ames Research Center Langley Research Center NASA Centers & Facilities NASA Headquarters View the full article
    • By NASA
      NASA Administrator Bill Nelson and Deputy Administrator Pam Melroy visited the agency’s Michoud Assembly Facility in New Orleans on Dec. 8, 2021 for tours and briefings on Michoud’s role in the Artemis program and other capabilities that enrich many facets of the nation’s space exploration endeavors. Credit: NASA/Michael DeMocker NASA Administrator Bill Nelson and Deputy Administrator Pam Melroy will lead the agency’s delegation at the International Astronautical Congress (IAC) from Monday, Oct. 14, to Thursday, Oct. 17, in Milan.
      During the congress, NASA will discuss its Low Earth Orbit Microgravity Strategy, emphasizing the agency’s efforts to advance microgravity science, technology, and exploration. The agency also will highlight its commitment to space sustainability and several missions, including initiatives that support NASA’s Moon to Mars exploration approach and the Artemis Accords.
      NASA will amplify the following talks happening at the congress through its YouTube Channel:
      Monday, Oct. 147:45 a.m. EDT (1:45 p.m. CEST): One-to-One with Heads of Agencies featuring Nelson. 12:15 p.m. EDT (6:15 p.m. CEST): Host Plenary on Responsible and Sustainable Space Exploration for Moon to Mars featuring Melroy. Wednesday, Oct. 16 9 a.m. EDT (3 p.m. CEST): A New Era in Human Presence featuring Melroy. A full agenda for this year’s IAC is available online.
      Members of the media registered for IAC will have three opportunities to meet with NASA leaders. To register, media must apply through the International Astronautical Federation website. Opportunities include:
      Monday, Oct. 14 5:30 p.m. CEST (11:30 a.m. EDT): NASA Deputy Administrator Pam Melroy, Lisa Campbell, president, CSA (Canadian Space Agency), and Teodoro Valente, president, Italian Space Agency, to discuss the 3rd Annual Heads of Agency meeting of the Artemis Accords Signatories. Tuesday, Oct. 15 5 p.m. CEST (11 a.m. EDT): NASA Administrator Bill Nelson to discuss the agency’s international partnerships in the Artemis era. Wednesday, Oct. 16 5 p.m. CEST (11 a.m. EDT): NASA Deputy Administrator Pam Melroy and Robyn Gatens, director of the International Space Station and acting director of Commercial Spaceflight to discuss NASA’s Low Earth Orbit Microgravity Strategy In addition to the events outlined above, NASA will have an exhibit featuring the first sample of the asteroid Bennu to appear publicly in a non-museum setting, as well as information on the Artemis campaign, NASA’s future in low Earth orbit, and several upcoming science and technology missions. NASA also will host subject matter expert talks throughout the week at its exhibit.
      NASA will provide photos and updates about its participation in the International Astronautical Congress from its @NASAExhibit account on X.
      For more information about NASA participation at IAC, visit:
      https://www.nasa.gov/nasa-at-iac
      -end-
      Amber Jacobson
      Headquarters, Washington
      240-298-1832
      amber.c.jacobson@nasa.gov
      Share
      Details
      Last Updated Oct 10, 2024 LocationNASA Headquarters Related Terms
      artemis accords Bill Nelson Pamela A. Melroy View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      On Sept. 19, the imaging spectrometer on the Carbon Mapper Coalition’s Tanager-1 satellite detected this methane plume in Karachi, Pakistan, extending nearly 2½ miles (4 kilometers) from a landfill. The spectrometer was designed at NASA JPL.Carbon Mapper/Planet Labs PBC Extending about 2 miles (3 kilometers) from a coal-fired power plant, this carbon dioxide plume in Kendal, South Africa, was captured Sept. 19 by the imaging spectrometer on the Carbon Mapper Coalition’s Tanager-1 satellite.Carbon Mapper/Planet Labs PBC This methane plume was captured south of Midland, Texas, in the Permian Basin, one of the world’s largest oil fields. The imaging spectrometer on the Carbon Mapper Coalition’s Tanager-1 satellite made the detection on Sept. 24.Carbon Mapper/Planet Labs PBC The imaging spectrometer aboard the Carbon Mapper Coalition’s Tanager-1 satellite identified methane and carbon dioxide plumes in the United States and internationally.
      Using data from an instrument designed by NASA’s Jet Propulsion Laboratory in Southern California, the nonprofit Carbon Mapper has released the first methane and carbon dioxide detections from the Tanager-1 satellite. The detections highlight methane plumes in Pakistan and Texas, as well as a carbon dioxide plume in South Africa.
      The data contributes to Carbon Mapper’s goal to identify and measure greenhouse gas point-source emissions on a global scale and make that information accessible and actionable. 
      Enabled by Carbon Mapper and built by Planet Labs PBC, Tanager-1 launched from Vandenberg Space Force Base in California on Aug. 16 and has been collecting data to verify that its imaging spectrometer, which is based on technology developed at NASA JPL, is functioning properly. Both Planet Labs PBC and JPL are members of the philanthropically funded Carbon Mapper Coalition.
      “The first greenhouse gas images from Tanager-1 are exciting and are a compelling sign of things to come,” said James Graf, director for Earth Science and Technology at JPL. “The satellite plays a crucial role in detecting and measuring methane and carbon dioxide emissions. The mission is a giant step forward in addressing greenhouse gas emissions.”
      The data used to produce the Pakistan image was collected over the city of Karachi on Sept. 19 and shows a roughly 2.5-mile-long (4-kilometer-long) methane plume emanating from a landfill. Carbon Mapper’s preliminary estimate of the source emissions rate is more than 2,600 pounds (1,200 kilograms) of methane released per hour.
      The image collected that same day over Kendal, South Africa, displays a nearly 2-mile-long (3-kilometer-long) carbon dioxide plume coming from a coal-fired power plant. Carbon Mapper’s preliminary estimate of the source emissions rate is roughly 1.3 million pounds (600,000 kilograms) of carbon dioxide per hour.
      The Texas image, collected on Sept. 24, reveals a methane plume to the south of the city of Midland, in the Permian Basin, one of the largest oilfields in the world. Carbon Mapper’s preliminary estimate of the source emissions rate is nearly 900 pounds (400 kilograms) of methane per hour.
      In the 1980s, JPL helped pioneer the development of imaging spectrometers with AVIRIS (Airborne Visible/Infrared Imaging Spectrometer), and in 2022, NASA installed the imaging spectrometer EMIT (Earth Surface Mineral Dust Source Investigation), developed at JPL, aboard the International Space Station.
      A descendant of those instruments, the imaging spectrometer aboard Tanager-1 can measure hundreds of wavelengths of light reflected from Earth’s surface. Each chemical compound on the ground and in the atmosphere reflects and absorbs different combinations of wavelengths, which give it a “spectral fingerprint” that researchers can identify. Using this approach, Tanager-1 will help researchers detect and measure emissions down to the facility level.
      Once in full operation, the spacecraft will scan about 116,000 square miles (300,000 square kilometers) of Earth’s surface per day. Methane and carbon dioxide measurements collected by Tanager-1 will be publicly available on the Carbon Mapper data portal.
      More About Carbon Mapper
      Carbon Mapper is a nonprofit organization focused on facilitating timely action to mitigate greenhouse gas emissions. Its mission is to fill gaps in the emerging global ecosystem of methane and carbon dioxide monitoring systems by delivering data at facility scale that is precise, timely, and accessible to empower science-based decision making and action. The organization is leading the development of the Carbon Mapper constellation of satellites supported by a public-private partnership composed of Planet Labs PBC, JPL, the California Air Resources Board, Arizona State University, and RMI, with funding from High Tide Foundation, Bloomberg Philanthropies, Grantham Foundation for the Protection of the Environment, and other philanthropic donors.
      News Media Contacts
      Andrew Wang / Jane J. Lee
      Jet Propulsion Laboratory, Pasadena, Calif.
      626-379-6874 / 818-354-0307
      andrew.wang@jpl.nasa.gov / jane.j.lee@jpl.nasa.gov
      2024-136
      Share
      Details
      Last Updated Oct 10, 2024 Related Terms
      Earth Earth Science Earth Science Division Greenhouse Gases Jet Propulsion Laboratory Explore More
      5 min read NASA-Funded Study Assesses Pollution Near Los Angeles-Area Warehouses
      Article 1 day ago 3 min read Connected Learning Ecosystems: Educators Learning and Growing Together
      On August 19-20, 53 educators from a diverse set of learning contexts (libraries, K-12 classrooms,…
      Article 2 days ago 9 min read Systems Engineer Noosha Haghani Prepped PACE for Space
      Article 2 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      4 Min Read Lunar Autonomy Mobility Pathfinder Workshop: A NASA Chief Technologist Sponsored Workshop
      OVERVIEW
      The NASA chief technologist’s team, within the Office of Technology, Policy, and Strategy (OTPS), is hosting a Lunar Autonomy Mobility Pathfinder (LAMP) workshop on Tuesday, November 12, 2024, to provide a community forum to discuss modeling and simulation testbeds in this domain. The workshop is in coordination with NASA’s Space Technology Mission Directorate. 
      With the Artemis campaign, NASA will land the first woman and first person of color on the Moon, using innovative technologies to explore more of the lunar surface than ever before. Technologies like trusted autonomy are necessary to support these types of sustained operations. Trusted autonomy is a more robust level of autonomy designed for long-term operational use. 
      The LAMP workshop will be held on Tuesday, November 12, 2024, from 10 a.m. to 5 p.m. PST at the University of Nevada Las Vegas (UNLV) Black Fire Innovation Facility in Las Vegas, Nevada. The Black Fire Innovation Center Building is located at 8400 W. Sunset Blvd. Las Vegas, NV 89113, approximately 20 minutes from the UNLV main campus. 
      This workshop has been designed to coincide with the 2024 Lunar Surface Innovation Consortium fall meeting (also taking place in Las Vegas, Nevada).  
      The OTPS solver-in-residence is the main organizer and facilitator for this workshop.
      PROGRAM 
      The LAMP workshop will provide a forum for a discussion on topics that include: 
      A modeling and simulation (M&S) pathfinder to explore an integrated sim environment for lunar stakeholders from commercial industry, other U.S. government agencies, international partners and academia, to simulate their systems that would eventually operate in the lunar environment and to test interoperability between systems.      How to leverage the planned rover missions to 1) calibrate and improve this M&S environment over time, and 2) potentially use them as autonomy testbeds to safely mature algorithms in a relevant environment.  Please RSVP for in-person or virtual attendance by registering at the following site:
       https://nasaevents.webex.com/weblink/register/rdf4dd38bc3bf176dc32d147513f7b77c
      *Please note registration is on an individual basis. If attending with multiple guests, each guest must register for the event separately. 

      LAMP Workshop Agenda
      (All times listed are in PST and subject to change)
      10:00 a.m. – 12:00p.m.Modeling and Simulation (M&S) showcase (In-person only & optional)
      This is an opportunity for interested participants to show their lunar simulation capabilities inside of UNLV’s Blackfire Innovation esports arena. Space is limited. Please indicate if you are interested in participating when you register, and we will reach out with additional information. 1:00 –2:00p.m.Challenges to Developing Trusted Autonomy 
      NASA will discuss the challenges of maturing autonomy that can be trusted to operate over long periods of time and how we can work together to overcome those challenges.2:00 –3:00p.m.Pre-Formulation Discussion of a Lunar Autonomy Mobility Pathfinder Modeling and Simulation Environment
      Subject matter experts (SMEs) from NASA will layout thoughts on what a digital transformation pathfinder would look like that benefits lunar autonomy efforts across the globe. 3:00 – 3:15p.m.Break3:15 – 4:15p.m.Lunar Testbeds Discussion
      This will be a discussion focused on how assets on the moon could be used as testbeds to generate truth data for Earth-based simulations and to validate that autonomy can be trusted in the lunar environment.4:15 – 5:00p.m.Polling and Discussions
      Audience feedback will be solicited on various topics. This will include a pre-formulated series of questions and real time polls. CONTACT 
      For questions, please email:

      Dr. Adam Yingling
      2024 OTPS Solver-in-Residence
      Office of Technology, Policy, and Strategy (OTPS) 
      NASA Headquarters 
      Email: adam.j.yingling@nasa.gov
      The Solver-in-Residence (SiR) program is a one-year detail position with the chief technologist in NASA’s Office of Technology Policy and Strategy. The program enables a NASA civil servant to propose a one-year investigation on a specific technology challenge and then work to identify solutions to address those challenges.
      Share
      Details
      Last Updated Oct 10, 2024 EditorBill Keeter Related Terms
      Office of Technology, Policy and Strategy (OTPS) Space Technology Mission Directorate View the full article
  • Check out these Videos

×
×
  • Create New...