Members Can Post Anonymously On This Site
NASA Wallops Offers Career Inspiration to Delmarva Students
-
Similar Topics
-
By NASA
Unable to render the provided source NASA invites the public to virtually sail along with the Advanced Composite Solar Sail System‘s space journey using NASA’s “Eyes on the Solar System” visualization tool, a digital model of the solar system. This simulation shows the real-time positions of the planets, moons, and spacecraft – including NASA’s Advanced Composite Solar Sail System.
Solar sails use the pressure of sunlight for propulsion, angling toward or away from the Sun so that photons bounce off the reflective sail to push a spacecraft. This eliminates the need for heavy propulsion systems and could enable longer duration and lower cost missions. The results from this technology demonstration – including the test of the sail’s composite boom system – will advance future space exploration to expand our understanding of our Sun and solar system.
The Advanced Composite Solar Sail System, which launched in April 2024, and deployed its reflective sail in August, is currently orbiting approximately 600 miles (1,000 kilometers) above Earth and is frequently visible in the night sky to observers in the Northern Hemisphere. Fans of the spacecraft can look for the sail in the night sky using a new feature in the NASA mobile app. Visibility may be intermittent, and the spacecraft could appear at variable levels of brightness as it moves in orbit.
For more mission updates, follow NASA’s Small Satellite Missions blog.
NASA’s Ames Research Center in California’s Silicon Valley, manages the Advanced Composite Solar Sail System project and designed and built the onboard camera diagnostic system. NASA Langley designed and built the deployable composite booms and solar sail system. NASA’s Small Spacecraft Technology (SST) program office based at NASA Ames and led by the agency’s Space Technology Mission Directorate (STMD), funds and manages the mission. NASA STMD’s Game Changing Development program funded the development of the deployable composite boom technology.
View the full article
-
By NASA
Jennifer Becerra has nearly three decades of experience in education, both in the classroom and within the NASA community. Leading a team dedicated to fostering a passion for science, technology, engineering, and mathematics (STEM), she develops programs that inspire students and educators alike.
Whether coordinating internships or organizing engagement events, Becerra creates educational opportunities to bring the excitement of NASA’s missions to life for students. As NASA’s Office of STEM Engagement (OSTEM) student services manager at Johnson Space Center in Houston, her efforts aim to cultivate the next generation of explorers and build a stronger, more engaged future workforce.
Official portrait of Jennifer Becerra. NASA/Josh Valcarcel Becerra’s responsibilities include overseeing intern recruitment, placement, and development. She leads the OSTEM Center Engagement to create impactful opportunities for students to connect with NASA’s mission and resources. Becerra also serves as the technical officer for NASA’s Teams II Engaging Affiliated Museums and Informal Institutions Community Anchor grant program. She assists in managing funded projects that advance STEM education by supporting institutions that serve as local hubs for learning and space exploration.
Becerra holds memberships in The National Science Teachers Association and the Science Teachers Association of Texas, further underscoring her dedication to empowering tomorrow’s innovators.
Student interns at Johnson Space Center hold a sign to encourage the next generation of explorers to apply to #BeAnAstronaut.NASA/Josh Valcarcel Becerra takes great pride in her work. One of her most fulfilling achievements is witnessing the spark of inspiration in students when they participate in events like astronaut graduation, the Artemis II crew announcement, or the OSIRIS-REx sample reveal. “Seeing their excitement and curiosity fuels our commitment to creating impactful experiences that encourage students to explore STEM fields,” she said. “We aim to inspire the next generation of explorers who may one day contribute to future NASA missions.”
Students congratulate the 23rd astronaut class at NASA’s Johnson Space Center in Houston on March 5, 2024.NASA/Josh Valcarcel Her upbringing on the Texas-Mexico border in Del Rio, Texas, deeply influences her sense of identity. She is an active member of Johnson’s Hispanic Employee Resource Group, which promotes cultural awareness and provides a platform to engage and educate the Johnson community about the richness and significance of Hispanic culture.
“I aim to foster a more inclusive environment where diverse perspectives are valued and celebrated,” she said. Becerra honors her culture in the workplace by embracing her authentic self every day and contributing to her team in meaningful ways.
Jennifer Becerra, left, receives a Group Special Act Award at Johnson Space Center. An important lesson she has learned throughout her career is the power of collaboration. “I’ve realized that it takes a collective effort to achieve our goals,” said Becerra. “I’ve come to deeply appreciate and rely on the diverse experiences and perspectives my colleagues bring to our team.”
Early in her career, Becerra faced imposter syndrome, but over time she overcame it by connecting with colleagues who shared her background. Today, she appreciates the inclusivity and collaboration within her teams.
Jennifer Becerra at NASA’s Johnson Space Center in Houston. Looking forward, Becerra is excited for the future of space exploration, especially the moment when the first woman steps onto the Moon. She hopes to inspire more girls to explore STEM and leave a lasting legacy with the Artemis Generation.
“Passion drives fulfillment and long-term commitment, especially at NASA,” she said. “I encourage students to seize every opportunity, build strong connections with their teams, and embrace the sense of being part of something much greater than themselves.”
View the full article
-
By NASA
Credit: NASA NASA has selected Metis Technology Solutions Inc. of Albuquerque, New Mexico, to provide engineering services as well as develop and maintain software and hardware used to conduct simulations for aerospace research and development across the agency.
The Aerospace Research, Technology, and Simulations (ARTS) contract is a hybrid cost-plus-fixed-fee and firm-fixed-price contract with an indefinite-delivery/indefinite-quantity component and has a maximum potential value of $177 million. The performance period begins Sunday, Dec. 1, 2024, with a one-year base period, and options to extend performance through November 2029.
Under this contract, the company will support the preparation, development, operation, and maintenance of future and existing simulators, integration laboratories, aircraft research systems, simulation work areas, and aircraft research systems. The scope of work also will include the development, testing, and validation of advanced air traffic management automation tools, including, but not limited to, advanced concepts for aviation ecosystems. Work will primarily be performed at NASA’s Ames Research Center in California’s Silicon Valley and NASA’s Langley Research Center in Hampton, Virginia, as well as other agency or government locations, as needed.
For information about NASA and agency programs, visit:
https://www.nasa.gov
-end-
Tiernan Doyle
Headquarters, Washington
202-358-1600
tiernan.doyle@nasa.gov
Rachel Hoover
Ames Research Center, Silicon Valley, Calif.
650-604-4789
rachel.hoover@nasa.gov
Share
Details
Last Updated Oct 10, 2024 LocationNASA Headquarters Related Terms
Ames Research Center Langley Research Center NASA Centers & Facilities NASA Headquarters View the full article
-
By NASA
NASA Administrator Bill Nelson and Deputy Administrator Pam Melroy visited the agency’s Michoud Assembly Facility in New Orleans on Dec. 8, 2021 for tours and briefings on Michoud’s role in the Artemis program and other capabilities that enrich many facets of the nation’s space exploration endeavors. Credit: NASA/Michael DeMocker NASA Administrator Bill Nelson and Deputy Administrator Pam Melroy will lead the agency’s delegation at the International Astronautical Congress (IAC) from Monday, Oct. 14, to Thursday, Oct. 17, in Milan.
During the congress, NASA will discuss its Low Earth Orbit Microgravity Strategy, emphasizing the agency’s efforts to advance microgravity science, technology, and exploration. The agency also will highlight its commitment to space sustainability and several missions, including initiatives that support NASA’s Moon to Mars exploration approach and the Artemis Accords.
NASA will amplify the following talks happening at the congress through its YouTube Channel:
Monday, Oct. 147:45 a.m. EDT (1:45 p.m. CEST): One-to-One with Heads of Agencies featuring Nelson. 12:15 p.m. EDT (6:15 p.m. CEST): Host Plenary on Responsible and Sustainable Space Exploration for Moon to Mars featuring Melroy. Wednesday, Oct. 16 9 a.m. EDT (3 p.m. CEST): A New Era in Human Presence featuring Melroy. A full agenda for this year’s IAC is available online.
Members of the media registered for IAC will have three opportunities to meet with NASA leaders. To register, media must apply through the International Astronautical Federation website. Opportunities include:
Monday, Oct. 14 5:30 p.m. CEST (11:30 a.m. EDT): NASA Deputy Administrator Pam Melroy, Lisa Campbell, president, CSA (Canadian Space Agency), and Teodoro Valente, president, Italian Space Agency, to discuss the 3rd Annual Heads of Agency meeting of the Artemis Accords Signatories. Tuesday, Oct. 15 5 p.m. CEST (11 a.m. EDT): NASA Administrator Bill Nelson to discuss the agency’s international partnerships in the Artemis era. Wednesday, Oct. 16 5 p.m. CEST (11 a.m. EDT): NASA Deputy Administrator Pam Melroy and Robyn Gatens, director of the International Space Station and acting director of Commercial Spaceflight to discuss NASA’s Low Earth Orbit Microgravity Strategy In addition to the events outlined above, NASA will have an exhibit featuring the first sample of the asteroid Bennu to appear publicly in a non-museum setting, as well as information on the Artemis campaign, NASA’s future in low Earth orbit, and several upcoming science and technology missions. NASA also will host subject matter expert talks throughout the week at its exhibit.
NASA will provide photos and updates about its participation in the International Astronautical Congress from its @NASAExhibit account on X.
For more information about NASA participation at IAC, visit:
https://www.nasa.gov/nasa-at-iac
-end-
Amber Jacobson
Headquarters, Washington
240-298-1832
amber.c.jacobson@nasa.gov
Share
Details
Last Updated Oct 10, 2024 LocationNASA Headquarters Related Terms
artemis accords Bill Nelson Pamela A. Melroy View the full article
-
By NASA
4 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
On Sept. 19, the imaging spectrometer on the Carbon Mapper Coalition’s Tanager-1 satellite detected this methane plume in Karachi, Pakistan, extending nearly 2½ miles (4 kilometers) from a landfill. The spectrometer was designed at NASA JPL.Carbon Mapper/Planet Labs PBC Extending about 2 miles (3 kilometers) from a coal-fired power plant, this carbon dioxide plume in Kendal, South Africa, was captured Sept. 19 by the imaging spectrometer on the Carbon Mapper Coalition’s Tanager-1 satellite.Carbon Mapper/Planet Labs PBC This methane plume was captured south of Midland, Texas, in the Permian Basin, one of the world’s largest oil fields. The imaging spectrometer on the Carbon Mapper Coalition’s Tanager-1 satellite made the detection on Sept. 24.Carbon Mapper/Planet Labs PBC The imaging spectrometer aboard the Carbon Mapper Coalition’s Tanager-1 satellite identified methane and carbon dioxide plumes in the United States and internationally.
Using data from an instrument designed by NASA’s Jet Propulsion Laboratory in Southern California, the nonprofit Carbon Mapper has released the first methane and carbon dioxide detections from the Tanager-1 satellite. The detections highlight methane plumes in Pakistan and Texas, as well as a carbon dioxide plume in South Africa.
The data contributes to Carbon Mapper’s goal to identify and measure greenhouse gas point-source emissions on a global scale and make that information accessible and actionable.
Enabled by Carbon Mapper and built by Planet Labs PBC, Tanager-1 launched from Vandenberg Space Force Base in California on Aug. 16 and has been collecting data to verify that its imaging spectrometer, which is based on technology developed at NASA JPL, is functioning properly. Both Planet Labs PBC and JPL are members of the philanthropically funded Carbon Mapper Coalition.
“The first greenhouse gas images from Tanager-1 are exciting and are a compelling sign of things to come,” said James Graf, director for Earth Science and Technology at JPL. “The satellite plays a crucial role in detecting and measuring methane and carbon dioxide emissions. The mission is a giant step forward in addressing greenhouse gas emissions.”
The data used to produce the Pakistan image was collected over the city of Karachi on Sept. 19 and shows a roughly 2.5-mile-long (4-kilometer-long) methane plume emanating from a landfill. Carbon Mapper’s preliminary estimate of the source emissions rate is more than 2,600 pounds (1,200 kilograms) of methane released per hour.
The image collected that same day over Kendal, South Africa, displays a nearly 2-mile-long (3-kilometer-long) carbon dioxide plume coming from a coal-fired power plant. Carbon Mapper’s preliminary estimate of the source emissions rate is roughly 1.3 million pounds (600,000 kilograms) of carbon dioxide per hour.
The Texas image, collected on Sept. 24, reveals a methane plume to the south of the city of Midland, in the Permian Basin, one of the largest oilfields in the world. Carbon Mapper’s preliminary estimate of the source emissions rate is nearly 900 pounds (400 kilograms) of methane per hour.
In the 1980s, JPL helped pioneer the development of imaging spectrometers with AVIRIS (Airborne Visible/Infrared Imaging Spectrometer), and in 2022, NASA installed the imaging spectrometer EMIT (Earth Surface Mineral Dust Source Investigation), developed at JPL, aboard the International Space Station.
A descendant of those instruments, the imaging spectrometer aboard Tanager-1 can measure hundreds of wavelengths of light reflected from Earth’s surface. Each chemical compound on the ground and in the atmosphere reflects and absorbs different combinations of wavelengths, which give it a “spectral fingerprint” that researchers can identify. Using this approach, Tanager-1 will help researchers detect and measure emissions down to the facility level.
Once in full operation, the spacecraft will scan about 116,000 square miles (300,000 square kilometers) of Earth’s surface per day. Methane and carbon dioxide measurements collected by Tanager-1 will be publicly available on the Carbon Mapper data portal.
More About Carbon Mapper
Carbon Mapper is a nonprofit organization focused on facilitating timely action to mitigate greenhouse gas emissions. Its mission is to fill gaps in the emerging global ecosystem of methane and carbon dioxide monitoring systems by delivering data at facility scale that is precise, timely, and accessible to empower science-based decision making and action. The organization is leading the development of the Carbon Mapper constellation of satellites supported by a public-private partnership composed of Planet Labs PBC, JPL, the California Air Resources Board, Arizona State University, and RMI, with funding from High Tide Foundation, Bloomberg Philanthropies, Grantham Foundation for the Protection of the Environment, and other philanthropic donors.
News Media Contacts
Andrew Wang / Jane J. Lee
Jet Propulsion Laboratory, Pasadena, Calif.
626-379-6874 / 818-354-0307
andrew.wang@jpl.nasa.gov / jane.j.lee@jpl.nasa.gov
2024-136
Share
Details
Last Updated Oct 10, 2024 Related Terms
Earth Earth Science Earth Science Division Greenhouse Gases Jet Propulsion Laboratory Explore More
5 min read NASA-Funded Study Assesses Pollution Near Los Angeles-Area Warehouses
Article 1 day ago 3 min read Connected Learning Ecosystems: Educators Learning and Growing Together
On August 19-20, 53 educators from a diverse set of learning contexts (libraries, K-12 classrooms,…
Article 2 days ago 9 min read Systems Engineer Noosha Haghani Prepped PACE for Space
Article 2 days ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.