Jump to content

Recommended Posts

  • Publishers
Posted
2 Min Read

NASA Volunteers Find Fifteen Rare “Active Asteroids”

A grid of sixteen square images showing the sequential progression of a comet moving across the night sky, captured in time-lapse photography. Each frame presents the comet as a bright point with an increasingly pronounced tail, moving diagonally from the top-left to the bottom-right corner against a dense backdrop of stars. The comet's brightness and the length of its tail appear to intensify as it traverses the field of stars.
NASA’s Active Asteroids project
Credits:
Henry Hsieh

Some extraordinary asteroids have “activity”–comet-like tails or envelopes of gas and dust.  NASA’s Active Asteroids project announced the discovery of activity on fifteen asteroids, challenging conventional wisdom about the solar system.

To find these fifteen rare objects, more than 8000 volunteers combed through 430,000 images from the Dark Energy Camera (DECam) on the Victor M. Blanco telescope in Chile. A paper about the results, now published in the Astronomical Journal, includes nine volunteers among the co-authors.

“For an amateur astronomer like me it’s a dream come true.” said volunteer Virgilio Gonano from Udine, Italy. “Congratulations to all the staff and the friends that also check the images!”

A close-up image of a comet in a star-filled night sky. The comet, located in the bottom right quarter, is bright with a prominent, elongated tail extending diagonally towards the upper left, indicated by a green arrow overlay pointing in the direction of the tail. The background is a dense mosaic of stars, and there's a large overexposed celestial body in the upper right corner, washing out a portion of the image with its brilliance.
Volunteers from the NASA’s “Active Asteroids” Citizen Science project identified a comet tail coming from
Asteroid 2015 VA108, one of the active asteroids spotted by volunteers from NASA’s “Active Asteroids” Citizen Science project. The object, indicated by the green arrow, orbits entirely within the main asteroid belt (located between Mars and Jupiter), but sports a tail like a comet.
Credit: Colin Orion Chandler (University of Washington)

Studying these rare active asteroids teaches scientists about the formation and evolution of the solar system, including the origins of water here on Earth. These objects may also aid future space exploration because the same ices that cause comet-like tails can power rockets or provide breathable air.

“I have been a member of the Active Asteroids team since its first batch of data,” said volunteer Tiffany Shaw-Diaz from Dayton, Ohio. “And to say that this project has become a significant part of my life is an understatement. I look forward to classifying subjects each day, as long as time or health permits, and I am beyond honored to work with such esteemed scientists on a regular basis.”

The Active Asteroids project was founded by Dr. Colin Orion Chandler, a LINCC Frameworks project scientist at the University of Washington and DiRAC Institute.  To join the project and help discover the next active asteroid, visit https://www.activeasteroids.net.

Share

Details

Last Updated
Mar 15, 2024

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA’s Athena Economical Payload Integration Cost mission, or Athena EPIC, is a test launch for an innovative, scalable space vehicle design to support future missions. The small satellite platform is engineered to share resources among the payloads onboard by managing routine functions so the individual payloads don’t have to.
      This technology results in lower costs to taxpayers and a quicker path to launch.
      Fully integrated, the Athena EPIC satellite undergoes performance testing in a NovaWurks cleanroom to prepare the sensor for launch. The optical module payload element may be seen near the top of the instrument with the single small telescope.NovaWurks “Increasing the speed of discovery is foundational to NASA. Our ability to leverage access to innovative space technologies across federal agencies through industry partners is the future,” said Clayton Turner, Associate Administrator for Space Technology Mission Directorate at NASA headquarters in Washington. “Athena EPIC is a valuable demonstration of the government at its best — serving humankind to advance knowledge with existing hardware configured to operate with new technologies.”

      The NOAA (National Oceanic and Atmospheric Administration) and the U.S. Space Force are government partners for this demo mission. Athena EPIC’s industry partner, NovaWurks, provided the space vehicle, which utilizes a small satellite platform assembled with a Hyper-Integrated Satlet, or HISat.
      Engineers at NovaWurks in Long Beach prepare to mount the optical payload subassembly (center, silver) consisting of the payload optical module and single telescope mounted between gimbals on each of two HISats on either side of the module which will allow scanning across the Earth’s surface.NovaWurks The HISat instruments are similar in nature to a child’s toy interlocking building blocks. They’re engineered to be built into larger structures called SensorCraft. Those SensorCraft can share resources with multiple payloads and conform to different sizes and shapes to accommodate them. This easily configurable, building-block architecture allows a lot of flexibility with payload designs and concepts, ultimately giving payload providers easier, less expensive access to space and increased maneuverability between multiple orbits.
      Scientists at NASA’s Langley Research Center in Hampton, Virginia, designed and built the Athena sensor payload, which consists of an optical module, a calibration module, and a newly developed sensor electronics assembly. Athena EPIC’s sensor was built with spare parts from NASA’s CERES (Clouds and the Earth’s Radiant Energy System) mission. Several different generations of CERES satellite and space station instruments have tracked Earth’s radiation budget.
      “Instead of Athena carrying its own processor, we’re using the processors on the HISats to control things like our heaters and do some of the control functions that typically would be done by a processor on our payload,” said Kory Priestley, principal investigator for Athena EPIC from NASA Langley. “So, this is merging an instrument and a satellite platform into what we are calling a SensorCraft. It’s a more integrated approach. We don’t need as many capabilities built into our key instrument because it’s being brought to us by the satellite host. We obtain greater redundancy, and it simplifies our payload.”
      The fully assembled and tested Athena EPIC satellite which incorporates eight HISats mounted on a mock-up of a SpaceX provided launch pedestal which will hold Athena during launch.NovaWurks This is the first HISat mission led by NASA. Traditional satellites, like the ones that host the CERES instruments — are large, sometimes the size of a school bus, and carry multiple instruments. They tend to be custom units built with all of their own hardware and software to manage control, propulsion, cameras, carousels, processors, batteries, and more, and sometimes even require two of everything to guard against failures in the system. All of these factors, plus the need for a larger launch vehicle, significantly increase costs.
      This transformational approach to getting instruments into space can reduce the cost from billions to millions per mission.  “Now we are talking about something much smaller — SensorCraft the size of a mini refrigerator,” said Priestley. “If you do have failures on orbit, you can replace these much more economically. It’s a very different approach moving forward for Earth observation.”
      The Athena EPIC satellite is shown here mounted onto a vibration table during pre-launch environmental testing. The optical payload is located at the top in this picture with the two solar arrays, stowed for launch, flanking the lower half sides of the satellite.NovaWurks Athena EPIC is scheduled to launch July 22 as a rideshare on a SpaceX Falcon 9 rocket from Vandenberg Space Force Base, California. The primary NASA payload on the launch will be the TRACERS (Tandem Reconnection and Cusp Electrodynamics Reconnaissance Satellites) mission. The TRACERS mission is led by the University of Iowa for NASA’s Heliophysics Division within the Science Mission Directorate. NASA’s Earth Science Division also provided funding for Athena EPIC.
      “Langley Research Center has long been a leader in developing remote sensing instruments for in-orbit satellites. As satellites become smaller, a less traditional, more efficient path to launch is needed in order to decrease complexity while simultaneously increasing the value of exploration, science, and technology measurements for the Nation,” added Turner.


      For more information on NASA’s Athena EPIC mission:
      https://science.nasa.gov/misshttps://science.nasa.gov/mission/athena/ion/athena/
      About the Author
      Charles G. Hatfield
      Science Public Affairs Officer, NASA Langley Research Center
      Share
      Details
      Last Updated Jul 18, 2025 ContactCharles G. Hatfieldcharles.g.hatfield@nasa.govLocationNASA Langley Research Center Related Terms
      Langley Research Center Earth Earth Science Division Earth's Atmosphere General Science Mission Directorate Explore More
      6 min read What You Need to Know About NASA’s SpaceX Crew-11 Mission
      Four crew members are preparing to launch to the International Space Station as part of…
      Article 8 hours ago 2 min read Hubble Digs Up Galactic Time Capsule
      This NASA/ESA Hubble Space Telescope image features the field of stars that is NGC 1786.…
      Article 12 hours ago 4 min read NASA to Launch SNIFS, Sun’s Next Trailblazing Spectator
      July will see the launch of the groundbreaking Solar EruptioN Integral Field Spectrograph mission, or…
      Article 1 day ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      4 Min Read Stay Cool: NASA Tests Innovative Technique for Super Cold Fuel Storage
      The tank for NASA’s two-stage cooling tests is lowered into a vacuum chamber in Test Stand 300 at NASA’s Marshall Space Flight Center in Huntsville, Alabama. Credits: NASA/Kathy Henkel In the vacuum of space, where temperatures can plunge to minus 455 degrees Fahrenheit, it might seem like keeping things cold would be easy. But the reality is more complex for preserving ultra-cold fluid propellants – or fuel – that can easily overheat from onboard systems, solar radiation, and spacecraft exhaust. The solution is a method called cryogenic fluid management, a suite of technologies that stores, transfers, and measures super cold fluids for the surface of the Moon, Mars, and future long-duration spaceflight missions.
      Super cold, or cryogenic, fluids like liquid hydrogen and liquid oxygen are the most common propellants for space exploration. Despite its chilling environment, space has a “hot” effect on these propellants because of their low boiling points – about minus 424 degrees Fahrenheit for liquid hydrogen and about minus 298 for liquid oxygen – putting them at risk of boiloff.
      In a first-of-its-kind demonstration, teams at NASA’s Marshall Space Flight Center in Huntsville, Alabama, are testing an innovative approach to achieve zero boiloff storage of liquid hydrogen using two stages of active cooling which could prevent the loss of valuable propellant.
      “Technologies for reducing propellant loss must be implemented for successful long-duration missions to deep space like the Moon and Mars,” said Kathy Henkel, acting manager of NASA’s Cryogenic Fluid Management Portfolio Project, based at NASA Marshall. “Two-stage cooling prevents propellant loss and successfully allows for long-term storage of propellants whether in transit or on the surface of a planetary body.”
      The new technique, known as “tube on tank” cooling, integrates two cryocoolers, or cooling devices, to keep propellant cold and thwart multiple heat sources. Helium, chilled to about minus 424 degrees Fahrenheit, circulates through tubes attached to the outer wall of the propellant tank.
      NASA’s two-stage cooling testing setup sits in a vacuum chamber in Test Stand 300 at NASA’s Marshall Space Flight Center in Huntsville, Alabama. NASA/Tom Perrin The tank for NASA’s two-stage cooling tests is lowered into a vacuum chamber in Test Stand 300 at NASA’s Marshall Space Flight Center in Huntsville, Alabama.NASA/Kathy Henkel The tank for NASA’s two-stage cooling tests is lowered into a vacuum chamber in Test Stand 300 at NASA’s Marshall Space Flight Center in Huntsville, Alabama. NASA/Kathy Henkel The tank for NASA’s two-stage cooling tests is lowered into a vacuum chamber in Test Stand 300 at NASA’s Marshall Space Flight Center in Huntsville, Alabama. NASA/Kathy Henkel Teams installed the propellant tank in a test stand at NASA Marshall in early June, and the 90-day test campaign is scheduled to conclude in September. The tank is wrapped in a multi-layer insulation blanket that includes a thin aluminum heat shield fitted between layers. A second set of tubes, carrying helium at about minus 298 Fahrenheit, is integrated into the shield. This intermediate cooling layer intercepts and rejects incoming heat before it reaches the tank, easing the heat load on the tube-on-tank system.
      To prevent dangerous pressure buildup in the propellant tank in current spaceflight systems, boiloff vapors must be vented, resulting in the loss of valuable fuel. Eliminating such propellant losses is crucial to the success of NASA’s most ambitious missions, including future crewed journeys to Mars, which will require storing large amounts of cryogenic propellant in space for months or even years. So far, cryogenic fuels have only been used for missions lasting less than a week.  
      “To go to Mars and have a sustainable presence, you need to preserve cryogens for use as rocket or lander return propellant,” Henkel said. “Rockets currently control their propellant through margin, where larger tanks are designed to hold more propellant than what is needed for a mission. Propellant loss isn’t an issue with short trips because the loss is factored into this margin. But, human exploration missions to Mars or longer stays at the Moon will require a different approach because of the very large tanks that would be needed.”
      The Cryogenic Fluid Management Portfolio Project is a cross-agency team based at NASA Marshall and the agency’s Glenn Research Center in Cleveland. The cryogenic portfolio’s work is under NASA’s Technology Demonstration Missions Program, part of NASA’s Space Technology Mission Directorate, and is comprised of more than 20 individual technology development activities.
      Learn more about cryogenic fluid management:
      https://go.nasa.gov/cfm
      Share
      Details
      Last Updated Jul 18, 2025 EditorLee MohonContactCorinne M. Beckingercorinne.m.beckinger@nasa.govLocationMarshall Space Flight Center Related Terms
      Cryogenic Fluid Management (CFM) Marshall Space Flight Center Space Technology Mission Directorate Technology Demonstration Technology Demonstration Missions Program Explore More
      3 min read NASA-Derived Textiles are Touring France by Bike
      Article 2 hours ago 3 min read Registration Opens for 2025 NASA International Space Apps Challenge
      Article 1 day ago 2 min read Ejection Mechanism Design for the SPEED Test Architecture Challenge
      Article 2 days ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      The Israel-Premier Tech team racing in the 2025 Tour de France uses Ekoï clothing and equipment, including products made with Outlast – a material developed with NASA’s assistance.Credit: Ekoï During the Tour de France, athletes have to maintain a constant speed while bike riding for dozens of miles through cold rains and summer heat. These cyclists need gear that adapts to the different environments they encounter. One company is using a material with NASA origins to ensure these athletes stay comfortable while taking their grand tours.

      Phase-change materials use basic properties of matter to maintain a steady temperature. When a substance melts from a solid to a liquid, the material absorbs heat, and when it becomes solid again, it releases that heat. In the 1980s, Triangle Research Corporation received a NASA Small Business Innovation Research award to explore how phase-change materials could be incorporated into textiles to control temperatures in spacesuit gloves. By placing phase-change materials in small capsules woven throughout a textile, these temperature-regulating properties can be tuned to the comfort of the human body. While these textiles weren’t incorporated into any gloves flown on NASA missions, they formed the basis for a new product, sold under the name Outlast.

      Outlast has since become one of the most widely distributed temperature-regulating fabrics, found in products such as bedding, loungewear, and office chairs. It has seen especially extensive use in activewear, ranging from jogging clothes to professional sports gear. 

      Founded in 2001 and based in Fréjus, France, the company Ekoï makes clothing and accessories for cyclists, particularly those who bike competitively. The company first encountered Outlast at the Performance Days fabric trade fair in Munich, Germany, and was impressed with its capabilities as well as its NASA heritage.

      “When you say NASA, it’s always impressive.” said Celine Milan, director of textiles at Ekoï. “At the beginning we were even saying in here in our offices, ‘Wow, this technology was developed by NASA.’ It’s on another level.”

      Ekoi’s Outlast line officially launched in July 2022, during that year’s Tour de France. Over the course of that race, the company found it improved cyclists’ performance in the event’s mountain stages, where elevation changes mean wide swings in temperature. It also improved athletes’ aerodynamics, as their jerseys could stay closed in warmer environments, rather than opening them to let in wind.

      Today, Ekoï sells several products that incorporate Outlast materials, including jerseys, gloves, and socks. These products are internationally known for their NASA heritage. Whether engineering for astronaut’s comfort in space or competitive athletes, NASA aims for excellence. 

      Learn more about NASA’s Spinoff Technologies: https://spinoff.nasa.gov/
      Read More Share
      Details
      Last Updated Jul 18, 2025 Related Terms
      Technology Transfer & Spinoffs Spinoffs Technology Transfer Explore More
      3 min read Comet-Catching NASA Technology Enables Exotic Works of Art 
      Article 1 month ago 2 min read NASA Tech Gives Treadmill Users a ‘Boost’  
      Creators of the original antigravity treadmill continue to advance technology with new company.
      Article 2 months ago 3 min read Winners Announced in NASA’s 2025 Gateways to Blue Skies Competition
      Article 2 months ago Keep Exploring Discover Related Topics
      Technology Transfer & Spinoffs
      Humans in Space
      SBIR/STTR Phase I
      Solar System
      View the full article
    • By NASA
      How Can I Get Involved with NASA Science? We Asked a NASA Expert
    • By NASA
      4 min read
      NASA to Launch SNIFS, Sun’s Next Trailblazing Spectator
      July will see the launch of the groundbreaking Solar EruptioN Integral Field Spectrograph mission, or SNIFS. Delivered to space via a Black Brant IX sounding rocket, SNIFS will explore the energy and dynamics of the chromosphere, one of the most complex regions of the Sun’s atmosphere. The SNIFS mission’s launch window at the White Sands Missile Range in New Mexico opens on Friday, July 18. 
      The chromosphere is located between the Sun’s visible surface, or photosphere, and its outer layer, the corona. The different layers of the Sun’s atmosphere have been researched at length, but many questions persist about the chromosphere. “There’s still a lot of unknowns,” said Phillip Chamberlin, a research scientist at the University of Colorado Boulder and principal investigator for the SNIFS mission.  
      The reddish chromosphere is visible on the Sun’s right edge in this view of the Aug. 21, 2017, total solar eclipse from Madras, Oregon.Credit: NASA/Nat Gopalswamy The chromosphere lies just below the corona, where powerful solar flares and massive coronal mass ejections are observed. These solar eruptions are the main drivers of space weather, the hazardous conditions in near-Earth space that threaten satellites and endanger astronauts. The SNIFS mission aims to learn more about how energy is converted and moves through the chromosphere, where it can ultimately power these massive explosions.  
      “To make sure the Earth is safe from space weather, we really would like to be able to model things,” said Vicki Herde, a doctoral graduate of CU Boulder who worked with Chamberlin to develop SNIFS.  
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      This footage from NASA’s Solar Dynamics Observatory shows the Sun in the 304-angstrom band of extreme ultraviolet light, which primarily reveals light from the chromosphere. This video, captured on Feb. 22, 2024, shows a solar flare — as seen in the bright flash on the upper left.Credit: NASA/SDO The SNIFS mission is the first ever solar ultraviolet integral field spectrograph, an advanced technology combining an imager and a spectrograph. Imagers capture photos and videos, which are good for seeing the combined light from a large field of view all at once. Spectrographs dissect light into its various wavelengths, revealing which elements are present in the light source, their temperature, and how they’re moving — but only from a single location at a time. 
      The SNIFS mission combines these two technologies into one instrument.  
      “It’s the best of both worlds,” said Chamberlin. “You’re pushing the limit of what technology allows us to do.” 
      By focusing on specific wavelengths, known as spectral lines, the SNIFS mission will help scientists to learn about the chromosphere. These wavelengths include a spectral line of hydrogen that is the brightest line in the Sun’s ultraviolet (UV) spectrum, and two spectral lines from the elements silicon and oxygen. Together, data from these spectral lines will help reveal how the chromosphere connects with upper atmosphere by tracing how solar material and energy move through it. 
      The SNIFS mission will be carried into space by a sounding rocket. These rockets are effective tools for launching and carrying space experiments and offer a valuable opportunity for hands-on experience, particularly for students and early-career researchers.
      (From left to right) Vicki Herde, Joseph Wallace, and Gabi Gonzalez, who worked on the SNIFS mission, stand with the sounding rocket containing the rocket payload at the White Sands Missile Range in New Mexico.Credit: courtesy of Phillip Chamberlin “You can really try some wild things,” Herde said. “It gives the opportunity to allow students to touch the hardware.” 
      Chamberlin emphasized how beneficial these types of missions can be for science and engineering students like Herde, or the next generation of space scientists, who “come with a lot of enthusiasm, a lot of new ideas, new techniques,” he said. 
      The entirety of the SNIFS mission will likely last up to 15 minutes. After launch, the sounding rocket is expected to take 90 seconds to make it to space and point toward the Sun, seven to eight minutes to perform the experiment on the chromosphere, and three to five minutes to return to Earth’s surface.  
      A previous sounding rocket launch from the White Sands Missile Range in New Mexico. This mission carried a copy of the Extreme Ultraviolet Variability Experiment (EVE).
      Credit: NASA/University of Colorado Boulder, Laboratory for Atmospheric and Space Physics/James Mason The rocket will drift around 70 to 80 miles (112 to 128 kilometers) from the launchpad before its return, so mission contributors must ensure it will have a safe place to land. White Sands, a largely empty desert, is ideal. 
      Herde, who spent four years working on the rocket, expressed her immense excitement for the launch. “This has been my baby.” 
      By Harper Lawson
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Share
      Details
      Last Updated Jul 17, 2025 Related Terms
      Heliophysics Goddard Space Flight Center Heliophysics Division Science & Research Sounding Rockets Sounding Rockets Program Wallops Flight Facility Explore More
      6 min read NASA’s TRACERS Studies Explosive Process in Earth’s Magnetic Shield
      Article 1 day ago 3 min read NASA Citizen Science and Your Career: Stories of Exoplanet Watch Volunteers
      Doing NASA Science brings many rewards. But can taking part in NASA citizen science help…
      Article 1 day ago 4 min read NASA Research Shows Path Toward Protocells on Titan
      Article 3 days ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
  • Check out these Videos

×
×
  • Create New...