Members Can Post Anonymously On This Site
Hubble's Infrared Eyes Home in on Suspected Extrasolar Planet
-
Similar Topics
-
By NASA
NASA/JPL-Caltech/MSSS The United States flag adorns an aluminum plate mounted at the base of the mast, or “head,” of NASA’s Perseverance Mars rover. This image of the plate was taken on June 28, 2025 (the 1,548th day, or sol, of the mission), by the WATSON (Wide Angle Topographic Sensor for Operations and eNgineering) camera on the end of the rover’s robotic arm.
WATSON, part of an instrument called SHERLOC (Scanning Habitable Environments with Raman & Luminescence for Organics & Chemicals), was built by Malin Space Science Systems (MSSS) in San Diego and is operated jointly by MSSS and NASA’s Jet Propulsion Laboratory in Southern California. JPL, which is managed for the agency by Caltech, built and manages operations of the Perseverance rover.
Learn more about Perseverance’s latest science.
View the full article
-
By NASA
Artist’s concept of the star HIP 67522 with a flare erupting toward an orbiting planet, HIP 67522 b. A second planet, HIP 67522 c, is shown in the background. Janine Fohlmeister, Leibniz Institute for Astrophysics Potsdam The Discovery
A giant planet some 400 light-years away, HIP 67522 b, orbits its parent star so tightly that it appears to cause frequent flares from the star’s surface, heating and inflating the planet’s atmosphere.
Key Facts
On planet Earth, “space weather” caused by solar flares might disrupt radio communications, or even damage satellites. But Earth’s atmosphere protects us from truly harmful effects, and we orbit the Sun at a respectable distance, out of reach of the flares themselves.
Not so for planet HIP 67522 b. A gas giant in a young star system – just 17 million years old – the planet takes only seven days to complete one orbit around its star. A “year,” in other words, lasts barely as long as a week on Earth. That places the planet perilously close to the star. Worse, the star is of a type known to flare – especially in their youth.
In this case, the proximity of the planet appears to result in fairly frequent flaring.
Details
The star and the planet form a powerful but likely a destructive bond. In a manner not yet fully understood, the planet hooks into the star’s magnetic field, triggering flares on the star’s surface; the flares whiplash energy back to the planet. Combined with other high-energy radiation from the star, the flare-induced heating appears to have increased the already steep inflation of the planet’s atmosphere, giving HIP 67522 b a diameter comparable to our own planet Jupiter despite having just 5% of Jupiter’s mass.
This might well mean that the planet won’t stay in the Jupiter size-range for long. One effect of being continually pummeled with intense radiation could be a loss of atmosphere over time. In another 100 million years, that could shrink the planet to the status of a “hot Neptune,” or, with a more radical loss of atmosphere, even a “sub-Neptune,” a planet type smaller than Neptune that is common in our galaxy but lacking in our solar system.
Fun Facts
Four hundred light-years is much too far away to capture images of stellar flares striking orbiting planets. So how did a science team led by Netherlands astronomer Ekaterina Ilin discover this was happening? They used space-borne telescopes, NASA’s TESS (Transiting Exoplanet Survey Satellite) and the European Space Agency’s CHEOPS (CHaracterising ExoPlanets Telescope), to track flares on the star, and also to trace the path of the planet’s orbit.
Both telescopes use the “transit” method to determine the diameter of a planet and the time it takes to orbit its star. The transit is a kind of mini-eclipse. As the planet crosses the star’s face, it causes a tiny dip in starlight reaching the telescope. But the same observation method also picks up sudden stabs of brightness from the star – the stellar flares. Combining these observations over five years’ time and applying rigorous statistical analysis, the science team revealed that the planet is zapped with six times more flares than it would be without that magnetic connection.
The Discoverers
A team of scientists from the Netherlands, Germany, Sweden, and Switzerland, led by Ekaterina Ilin of the Netherlands Institute for Radio Astronomy, published their paper on the planet-star connection, “Close-in planet induces flares on its host star,” in the journal Nature on July 2, 2025.
Keep Exploring Discover More Topics From NASA
Search for Life
Stars
Galaxies
Black Holes
Explore This Section Exoplanets Home Exoplanets Overview Exoplanets Facts Types of Exoplanets Stars What is the Universe Search for Life The Big Questions Are We Alone? Can We Find Life? The Habitable Zone Why We Search Target Star Catalog Discoveries Discoveries Dashboard How We Find and Characterize Missions People Exoplanet Catalog Immersive The Exoplaneteers Exoplanet Travel Bureau 5 Ways to Find a Planet Strange New Worlds Universe of Monsters Galaxy of Horrors News Stories Blog Resources Get Involved Glossary Eyes on Exoplanets Exoplanet Watch More Multimedia ExEP View the full article
-
By European Space Agency
Video: 00:01:38 On 11 June, engineers at OHB’s facilities in Germany joined together the two main parts of ESA’s Plato mission.
They used a special crane to lift Plato’s payload module, housing its 26 ultra-sensitive cameras, into the air and carefully line it up over the service module. The supporting service module contains everything else that the spacecraft needs to function, including subsystems for power, propulsion and communication with Earth.
With millimetre-level precision, the engineers gently lowered the payload module into place. Once perfectly positioned, the team tested the electrical connections.
Finally, they securely closed a panel that connects the payload module to the service module both physically and electronically (seen ‘hanging’ horizontally above the service module in this image). This panel, which opens and closes with hinges, also contains the electronics to process data from the cameras.
Now in one piece, Plato is one step closer to beginning its hunt for Earth-like planets.
In the coming weeks, the spacecraft will undergo tests to ensure its cameras and data processing systems still work perfectly.
Then it will be driven from OHB’s cleanrooms to ESA’s technical heart (ESTEC) in the Netherlands. At ESTEC, engineers will complete the spacecraft by fitting it with a combined sunshield and solar panel module.
Following a series of essential tests to confirm that Plato is fit for launch and ready to work in space, it will be shipped to Europe’s launch site in French Guiana.
The mission is scheduled to launch on an Ariane 6 in December 2026.
Access the related broadcast quality video footage.
ESA’s Plato (PLAnetary Transits and Oscillations of stars) will use 26 cameras to study terrestrial exoplanets in orbits up to the habitable zone of Sun-like stars.
Plato's scientific instrumentation, consisting of the cameras and electronic units, is provided through a collaboration between ESA and the Plato Mission Consortium. This Consortium is composed of various European research centres, institutes and industries, led by the German Aerospace Center (DLR). The spacecraft is being built and assembled by the industrial Plato Core Team led by OHB together with Thales Alenia Space and Beyond Gravity.
View the full article
-
By European Space Agency
Astronomers using the NASA/ESA/CSA James Webb Space Telescope have captured compelling evidence of a planet with a mass similar to Saturn orbiting the young nearby star TWA 7.
If confirmed, this would represent Webb’s first direct image discovery of a planet, and the lightest planet ever seen with this technique.
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.