Jump to content

NASA’s Roman Team Selects Survey to Map Our Galaxy’s Far Side


NASA

Recommended Posts

  • Publishers
A skinny, horizontal image with a dark, dusty band in the middle spanning from the left edge to the right. Smoky wisps extend hazily out from the central, disconnected dark line. Tiny stars speckle the grayish background and a warm glow emanates from behind the dark band in the middle.
The plane of our Milky Way galaxy, as seen by ESA’s Gaia space mission. It contains more than a billion stars, along with darker, dusty regions Gaia couldn’t see through. With its greater sensitivity and longer wavelength coverage, NASA’s Nancy Grace Roman Space Telescope’s galactic plane survey will peer through more of the dust and reveal far more stars.
Credit: ESA/Gaia/DPAC

NASA’s Nancy Grace Roman Space Telescope team has announced plans for an unprecedented survey of the plane of our Milky Way galaxy. It will peer deeper into this region than any other survey, mapping more of our galaxy’s stars than all previous observations combined.

“There’s a really broad range of science we can explore with this type of survey, from star formation and evolution to dust in between stars and the dynamics of the heart of the galaxy,” said Catherine Zucker, an astrophysicist at the Center for Astrophysics | Harvard & Smithsonian in Cambridge, Massachusetts, who co-authored a white paper describing some of the benefits of such an observing program.

Scientists have studied our solar system’s neighborhood pretty well, but much of the galaxy remains shrouded from view. NASA’s Nancy Grace Roman Space Telescope will peer through thick bands of dust to reveal parts of our galaxy we’ve never been able to explore before, thanks to a newly selected galactic plane survey. Credit: NASA’s Goddard Space Flight Center

A galactic plane survey was the top-ranked submission following a 2021 call for Roman survey ideas. Now, the scientific community will work together to design the observational program ahead of Roman’s launch by May 2027.

“There will be lots of trade-offs since scientists will have to choose between, for example, how much area to cover and how completely to map it in all the different possible filters,” said paper co-author Robert Benjamin, an astronomer at the University of Wisconsin-Whitewater.

While the details of the survey remain to be determined, scientists say if it covered about 1,000 square degrees – a region of sky as large as 5,000 full moons – it could reveal well over 100 billion cosmic objects (mainly stars).

“That would be pretty close to a complete census of all the stars in our galaxy, and it would only take around a month,” said Roberta Paladini, a senior research scientist at Caltech/IPAC in Pasadena, California, and the white paper’s lead author. “It would take decades to observe such a large patch of the sky with the Hubble or James Webb space telescopes. Roman will be a survey machine!”

Milky Way Anatomy

Observatories with smaller views of space have provided exquisite images of other galaxies, revealing complex structures. But studying our own galaxy’s anatomy is surprisingly difficult. The plane of the Milky Way covers such a large area on the sky that studying it in detail can take a very long time. Astronomers also must peer through thick dust that obscures distant starlight.

While we’ve studied our solar system’s neighborhood well, Zucker says, “we have basically no idea what the other half of that Milky Way looks like beyond the galactic center.”

Observatories like NASA’s retired Spitzer Space Telescope have conducted shallower surveys of the galactic plane and revealed some star-forming regions on the far side of the galaxy. But it couldn’t resolve fine details like Roman will do.

“Spitzer set up the questions that Roman will be able to solve,” Benjamin said.

Roman’s combination of a large field of view, crisp resolution, and the ability to peer through dust make it the ideal instrument to study the Milky Way. And seeing stars in different wavelengths of light – optical and infrared – will help astronomers learn things such as the stars’ temperatures. That one piece of information unlocks much more data, from the star’s evolutionary stage and composition to its luminosity and size.

“We can do very detailed studies of things like star formation and the structure of our own galaxy in a way that we can’t do for any other galaxy,” Paladini said.

wh.png?w=1770
This image shows two views of the same spiral galaxy, called IC 5332, as seen by two NASA observatories – the James Webb Space Telescope’s observations appear at the top left and the Hubble Space Telescope’s at the bottom right. The views are mainly so different due to the wavelengths of light they each showcase. Hubble’s visible and ultraviolet observation features dark regions where dust absorbs those types of light. Webb sees longer wavelengths and detects that dust glowing in infrared. But neither could conduct an efficient survey of our Milky Way galaxy because it covers so much sky area; since IC 5332 is around 30 million light-years away, it appears as a small spot. It would take Hubble or Webb decades to survey the Milky Way, but NASA’s upcoming Nancy Grace Roman Space Telescope could do it in less than a month.
Credit: NASA, ESA, CSA, STScI, Janice Lee (STScI), Thomas Williams (Oxford), Rupali Chandar (UToledo), PHANGS Team

Roman will offer new insights about the structure of the central region known as the bulge, the “bar” that stretches across it, and the spiral arms that extend from it.

“We’ll basically rewrite the 3D picture of the far side of the galaxy,” Zucker said.

Roman’s sharp vision will help astronomers see individual stars even in stellar nurseries on the far side of the galaxy. That will help Roman generate a huge new catalog of stars since it will be able to map 10 times farther than previous precision mapping by ESA’s (the European Space Agency’s) Gaia space mission. Gaia mapped over 1 billion stars in 3D largely within about 10,000 light-years. Roman could map up to 100 billion stars 100,000 light-years away or more (stretching out to the most distant edge of our galaxy and beyond).

The Galactic Plane Survey is Roman’s first announced general astrophysics survey – one of several observation programs Roman will do in addition to its three core community surveys and Coronagraph technology demonstration. At least 25% of Roman’s five-year primary mission will be allocated to general astrophysics surveys in order to pursue science that can’t be done with only the mission’s core community survey data. Astronomers from all over the world will have the opportunity to use Roman and propose cutting-edge research, enabling the astronomical community to utilize the full potential of Roman’s capabilities to conduct extraordinary science.

The Nancy Grace Roman Space Telescope is managed at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, with participation by NASA’s Jet Propulsion Laboratory and Caltech/IPAC in Southern California, the Space Telescope Science Institute in Baltimore, and a science team comprising scientists from various research institutions. The primary industrial partners are BAE Systems in Boulder, Colorado; L3Harris Technologies in Melbourne, Florida; and Teledyne Scientific & Imaging in Thousand Oaks, California.

Download high-resolution video and images from NASA’s Scientific Visualization Studio

By Ashley Balzer
NASA’s Goddard Space Flight Center, Greenbelt, Md.

Media contact:

Claire Andreoli
NASA’s Goddard Space Flight Center, Greenbelt, Md.
claire.andreoli@nasa.gov
301-286-1940

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Hubble Space Telescope Home NASA’s Hubble, New… Hubble Space Telescope Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts News Hubble News Hubble News Archive Social Media Media Resources Multimedia Multimedia Images Videos Sonifications Podcasts E-books Lithographs Fact Sheets Glossary Posters Hubble on the NASA App More Online Activities   6 min read
      NASA’s Hubble, New Horizons Team Up for a Simultaneous Look at Uranus
      NASA’s Hubble Space Telescope (left) and NASA’s New Horizon’s spacecraft (right) images the planet Uranus. NASA, ESA, STScI, Samantha Hasler (MIT), Amy Simon (NASA-GSFC), New Horizons Planetary Science Theme Team; Image Processing: Joseph DePasquale (STScI), Joseph Olmsted (STScI)
      Download this image

      NASA’s Hubble Space Telescope and New Horizons spacecraft simultaneously set their sights on Uranus recently, allowing scientists to make a direct comparison of the planet from two very different viewpoints. The results inform future plans to study like types of planets around other stars.
      Astronomers used Uranus as a proxy for similar planets beyond our solar system, known as exoplanets, comparing high-resolution images from Hubble to the more-distant view from New Horizons. This combined perspective will help scientists learn more about what to expect while imaging planets around other stars with future telescopes.
      “While we expected Uranus to appear differently in each filter of the observations, we found that Uranus was actually dimmer than predicted in the New Horizons data taken from a different viewpoint,” said lead author Samantha Hasler of the Massachusetts Institute of Technology in Cambridge and New Horizons science team collaborator.
      In this image, two three-dimensional shapes (top) of Uranus are compared to the actual views of the planet from NASA’s Hubble Space Telescope (bottom left) and NASA’s New Horizon’s spacecraft (bottom right). Comparing high-resolution images from Hubble to the smaller view from New Horizons offers a combined perspective that will help researchers learn more about what to expect while imaging planets around other stars with future observatories. NASA, ESA, STScI, Samantha Hasler (MIT), Amy Simon (NASA-GSFC), New Horizons Planetary Science Theme Team; Image Processing: Joseph DePasquale (STScI), Joseph Olmsted (STScI)
      Download this image

      Direct imaging of exoplanets is a key technique for learning about their potential habitability, and offers new clues to the origin and formation of our own solar system. Astronomers use both direct imaging and spectroscopy to collect light from the observed planet and compare its brightness at different wavelengths. However, imaging exoplanets is a notoriously difficult process because they’re so far away. Their images are mere pinpoints and so are not as detailed as the close-up views that we have of worlds orbiting our Sun. Researchers can also only directly image exoplanets at “partial phases,” when only a portion of the planet is illuminated by their star as seen from Earth.
      Uranus was an ideal target as a test for understanding future distant observations of exoplanets by other telescopes for a few reasons. First, many known exoplanets are also gas giants similar in nature. Also, at the time of the observations, New Horizons was on the far side of Uranus, 6.5 billion miles away, allowing its twilight crescent to be studied—something that cannot be done from Earth. At that distance, the New Horizons view of the planet was just several pixels in its color camera, called the Multispectral Visible Imaging Camera.
      On the other hand, Hubble, with its high resolution, and in its low-Earth orbit 1.7 billion miles away from Uranus, was able to see atmospheric features such as clouds and storms on the day side of the gaseous world.
      “Uranus appears as just a small dot on the New Horizons observations, similar to the dots seen of directly-imaged exoplanets from observatories like Webb or ground-based observatories,” added Hasler. “Hubble provides context for what the atmosphere is doing when it was observed with New Horizons.”
      The gas giant planets in our solar system have dynamic and variable atmospheres with changing cloud cover. How common is this among exoplanets? By knowing the details of what the clouds on Uranus looked like from Hubble, researchers are able to verify what is interpreted from the New Horizons data. In the case of Uranus, both Hubble and New Horizons saw that the brightness did not vary as the planet rotated, which indicates that the cloud features were not changing with the planet’s rotation.
      However, the importance of the detection by New Horizons has to do with how the planet reflects light at a different phase than what Hubble, or other observatories on or near Earth, can see. New Horizons showed that exoplanets may be dimmer than predicted at partial and high phase angles, and that the atmosphere reflects light differently at partial phase.
      NASA has two major upcoming observatories in the works to advance studies of exoplanet atmospheres and potential habitability.
      “These landmark New Horizons studies of Uranus from a vantage point unobservable by any other means add to the mission’s treasure trove of new scientific knowledge, and have, like many other datasets obtained in the mission, yielded surprising new insights into the worlds of our solar system,” added New Horizons principal investigator Alan Stern of the Southwest Research Institute.
      This illustration shows NASA’s New Horizons spacecraft’s view of our solar system from deep in the Kuiper Belt. New Horizons is currently at an estimated distance of more than 5 billion miles from Earth. The probe was 6.5 billion miles away from Uranus when it recently observed the planet. In this study, researchers used the gas giant as an exoplanet proxy, comparing high-resolution images from NASA’s Hubble Space Telescope to the smaller view from New Horizons to learn more about what to expect while imaging planets around other stars. NASA, ESA, Christian Nieves (STScI), Ralf Crawford (STScI), Greg Bacon (STScI)
      Download this image

      NASA’s upcoming Nancy Grace Roman Space Telescope, set to launch by 2027, will use a coronagraph to block out a star’s light to directly see gas giant exoplanets. NASA’s Habitable Worlds Observatory, in an early planning phase, will be the first telescope designed specifically to search for atmospheric biosignatures on Earth-sized, rocky planets orbiting other stars.
      “Studying how known benchmarks like Uranus appear in distant imaging can help us have more robust expectations when preparing for these future missions,” concluded Hasler. “And that will be critical to our success.”
      Launched in January 2006, New Horizons made the historic flyby of Pluto and its moons in July 2015, before giving humankind its first close-up look at one of these planetary building block and Kuiper Belt object, Arrokoth, in January 2019. New Horizons is now in its second extended mission, studying distant Kuiper Belt objects, characterizing the outer heliosphere of the Sun, and making important astrophysical observations from its unmatched vantage point in distant regions of the solar system.
      The Uranus results are being presented this week at the 56th annual meeting of the American Astronomical Society Division for Planetary Sciences, in Boise, Idaho.
      The Hubble Space Telescope has been operating for over three decades and continues to make ground-breaking discoveries that shape our fundamental understanding of the universe. Hubble is a project of international cooperation between NASA and ESA (European Space Agency). NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope and mission operations. Lockheed Martin Space, based in Denver, Colorado, also supports mission operations at Goddard. The Space Telescope Science Institute in Baltimore, Maryland, which is operated by the Association of Universities for Research in Astronomy, conducts Hubble science operations for NASA.
      The Johns Hopkins Applied Physics Laboratory (APL) in Laurel, Maryland, built and operates the New Horizons spacecraft and manages the mission for NASA’s Science Mission Directorate. Southwest Research Institute, based in San Antonio and Boulder, Colorado, directs the mission via Principal Investigator Alan Stern and leads the science team, payload operations and encounter science planning. New Horizons is part of NASA’s New Frontiers program, managed by NASA’s Marshall Space Flight Center in Huntsville, Alabama.
      Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contacts:
      Claire Andreoli
      NASA’s Goddard Space Flight Center, Greenbelt, MD
      claire.andreoli@nasa.gov
      Hannah Braun, Ray Villard
      Space Telescope Science Institute, Baltimore, MD
      Science Contacts:
      Samantha Hasler
      Massachusetts Institute of Technology, Cambridge, MA
      Share








      Details
      Last Updated Oct 09, 2024 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms
      Astrophysics Division Goddard Space Flight Center Hubble Space Telescope New Horizons Planetary Science Planetary Science Division Planets The Solar System Uranus Keep Exploring Explore More
      Hubble Space Telescope


      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


      New Horizons


      New Horizons was the first spacecraft to explore Pluto and its five moons up close and, later, made the first…


      Studying the Outer Planets and Moons



      Hubble Online Activities


      View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      A major component of NASA’s Nancy Grace Roman Space Telescope just took a spin on the centrifuge at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Called the Outer Barrel Assembly, this piece of the observatory is designed to keep the telescope at a stable temperature and shield it from stray light.
      This structure, called the Outer Barrel Assembly, will surround and protect NASA’s Nancy Grace Roman Space Telescope from stray light that could interfere with its observations. In this photo, engineers prepare the assembly for testing.NASA/Chris Gunn The two-part spin test took place in a large, round test chamber. Stretching across the room, a 600,000-pound (272,000-kilogram) steel arm extends from a giant rotating bearing in the center of the floor.
      The test itself is like a sophisticated version of a popular carnival attraction, designed to apply centrifugal force to the rider — in this case, the outer covering for Roman’s telescope. It spun up to 18.4 rotations per minute. That may not sound like much, but it generated force equivalent to just over seven times Earth’s gravity, or 7 g, and sent the assembly whipping around at 80 miles per hour.
      “We couldn’t test the entire Outer Barrel Assembly in the centrifuge in one piece because it’s too large to fit in the room,” said Jay Parker, product design lead for the assembly at Goddard. The structure stands about 17 feet (5 meters) tall and is about 13.5 feet (4 meters) wide. “It’s designed a bit like a house on stilts, so we tested the ‘house’ and ‘stilts’ separately.”
      The “stilts” went first. Technically referred to as the elephant stand because of its similarity to structures used in circuses, this part of the assembly is designed to surround Roman’s Wide Field Instrument and Coronagraph Instrument like scaffolding. It connects the upper portion of the Outer Barrel Assembly to the spacecraft bus, which will maneuver the observatory to its place in space and support it while there. The elephant stand was tested with weights attached to it to simulate the rest of the assembly’s mass.
      This photo shows a view from inside the Outer Barrel Assembly for NASA’s Nancy Grace Roman Space Telescope. The inner rings, called baffles, will help protect the observatory’s primary mirror from stray light.NASA/Chris Gunn Next, the team tested the “house” — the shell and a connecting ring that surround the telescope. These parts of the assembly will ultimately be fitted with heaters to help ensure the telescope’s mirrors won’t experience wide temperature swings, which make materials expand and contract.
      To further protect against temperature fluctuations, the Outer Barrel Assembly is mainly made of two types of carbon fibers mixed with reinforced plastic and connected with titanium end fittings. These materials are both stiff (so they won’t warp or flex during temperature swings) and lightweight (reducing launch demands).
      If you could peel back the side of the upper portion –– the house’s “siding” –– you’d see another weight-reducing measure. Between inner and outer panels, the material is structured like honeycomb. This pattern is very strong and lowers weight by hollowing out portions of the interior.
      Designed at Goddard and built by Applied Composites in Los Alamitos, California, Roman’s Outer Barrel Assembly was delivered in pieces and then put together in a series of crane lifts in Goddard’s largest clean room. It was partially disassembled for centrifuge testing, but will now be put back together and integrated with Roman’s solar panels and Deployable Aperture Cover at the end of the year.
      In 2025, these freshly integrated components will go through thermal vacuum testing together to ensure they will withstand the temperature and pressure environment of space. Then they’ll move to a shake test to make sure they will hold up against the vibrations they’ll experience during launch. Toward the end of next year, they will be integrated with rest of the observatory.
      To virtually tour an interactive version of the telescope, visit:
      https://roman.gsfc.nasa.gov/interactive
      The Nancy Grace Roman Space Telescope is managed at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, with participation by NASA’s Jet Propulsion Laboratory and Caltech/IPAC in Southern California, the Space Telescope Science Institute in Baltimore, and a science team comprising scientists from various research institutions. The primary industrial partners are BAE Systems, Inc in Boulder, Colorado; L3Harris Technologies in Rochester, New York; and Teledyne Scientific & Imaging in Thousand Oaks, California.
      By Ashley Balzer
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      ​​Media Contact:
      Claire Andreoli
      NASA’s Goddard Space Flight Center
      301-286-1940
      Share
      Details
      Last Updated Oct 08, 2024 EditorJamie AdkinsContactClaire Andreoli Related Terms
      Nancy Grace Roman Space Telescope Goddard Space Flight Center Science-enabling Technology Technology Explore More
      2 min read Tech Today: Spraying for Food Safety
      Article 19 hours ago 5 min read NASA: New Insights into How Mars Became Uninhabitable
      NASA’s Curiosity rover, currently exploring Gale crater on Mars, is providing new details about how…
      Article 20 hours ago 2 min read Hubble Observes a Peculiar Galaxy Shape
      This NASA/ESA Hubble Space Telescope image reveals the galaxy, NGC 4694. Most galaxies fall into…
      Article 4 days ago View the full article
    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions The Solar System The Sun Mercury Venus Earth The Moon Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets Asteroids, Comets & Meteors The Kuiper Belt The Oort Cloud 3 min read
      Sols 4325-4326: (Not Quite) Dipping Our Toes in the Sand
      NASA’s Mars rover Curiosity captured this image using its Left Navigation Camera on Sol 4323 — Martian day 4,323 of the Mars Science Laboratory mission — on Oct. 4, 2024, at 00:29:40 UTC. NASA/JPL-Caltech Earth planning date: Friday, Oct. 4, 2024
      If you read this blog very often, you know that nearly every time the rover stops for science, MAHLI and APXS focus on interesting (and accessible!) rocks as targets. The rover science team is, after all, built with a lot of geologists. But geology is not all rocks, all the time — sand is former rock that if buried and pressurized long enough will become rock again. Today was time for sand to shine, as the workspace was cut by troughs of sand of different colors and brightnesses, and it had been nearly 500 sols since we acquired our last dedicated sand measurement with APXS and MAHLI. The “Pumice Flat” target was one of the brighter sand patches while “Kidney Lake” was one of the darker sand patches. APXS uses a special placement mode over sand targets so the instrument gets close, but not too close, to the loose material which could foul up the instrument. Not-rock was also the purview of our environmental observations. Navcam is scheduled for imaging seeking out clouds and dust devils, and changes in the sand and dust on top of the rover deck. Both Navcam and Mastcam will make observations to measure the amount of dust in the atmosphere. REMS will keep track of our weather with regular measurements, RAD will monitor our radiation environment, and DAN will look through rock for signs of water beneath our drive path.
      Unsurprisingly, the rest of the rover could not ignore bedrock. We managed to squeeze in DRT cleaning of a nice bedrock slab, “Ribbon Fall,” for MAHLI-only imaging. In places, the bedrock slabs were cut by thin veins of darker gray material, similar to dark gray materials we saw in the bedrock on the other side of Gediz Vallis. ChemCam targeted one of these dark gray examples at “Black Divide,” and also rastered across some of the prominent layers visible in the vertical faces in the workspace at the aptly named “Profile View.” 
      Our imaging efforts could be roughly divided between looking back at our path through Gediz Vallis from our new and higher perspective, and looking ahead to what awaits us. ChemCam planned RMI mosaics back toward a field of the white stones we spent time studying in Gediz Vallis and toward a part of the edge of Gediz Vallis that we did not explore previously. Mastcam looked back at the part of the edge of Gediz Vallis we just traversed, “Pilot Peak,” for clues as to why it sits higher than the bedrock farther from the channel edge. They also targeted “Clyde Spires,” which was a gravel ridge in Gediz Vallis of interest as we drove by it initially. Looking ahead, Mastcam imaged a puzzling gray rock sitting atop the bedrock slabs south of us at target “Buena Vista Grove,” and further south still, they planned a large mosaic covering a very big rock — the spectacular “Texoli” butte that has loomed and will continue to loom over our path for months to come.
      Written by Michelle Minitti, Planetary Geologist at Framework
      Share








      Details
      Last Updated Oct 07, 2024 Related Terms
      Blogs Explore More
      2 min read Perseverance Matters
      It is an important and exciting juncture in Mars exploration and astrobiology. This year, the…


      Article


      5 hours ago
      2 min read Sols 4323-4324: Surfin’ Our Way out of the Channel


      Article


      4 days ago
      2 min read Sols 4321-4322: Sailing Out of Gediz Vallis


      Article


      5 days ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
    • By NASA
      NASA Administrator Bill Nelson, left, and Kirk Johnson, Sant director, the Smithsonian’s National Museum of Natural History, preview NASA’s new Earth Information Center at the museum in Washington on Oct. 7, 2024. The exhibit includes a video wall displaying Earth science data visualizations and videos, an interpretive panel showing Earth’s connected systems, information on our changing world, and an overview of how NASA and the Smithsonian study our home planet.Credit: NASA/Bill Ingalls NASA Administrator Bill Nelson joined the director of the Smithsonian’s National Museum of Natural History in Washington and agency leadership to unveil the new Earth Information Center exhibit during an early preview on Monday.
      “NASA has studied Earth and our changing climate for more than 60 years. The Earth Information Center at the Smithsonian Museum of Natural History will expand access to NASA’s data and our decades of Earth observation to even more people,” said Nelson. “Together with the Smithsonian, we are providing detailed, usable, and scalable information to enable the public to better understand the climate crisis and take action in their community.”
      The exhibit includes a 32-foot-long, 12-foot-high video wall displaying Earth science data visualizations and videos, interpretive panels showing Earth’s connected systems, information on our changing world, and an overview of how NASA and the Smithsonian study our home planet. It opens to the public Tuesday, Oct. 8. 
      “The new Earth Information Center at the National Museum of Natural History will bring Smithsonian and NASA data on the Earth’s environment and climate to thousands of museum visitors every year,” said Kirk Johnson, the museum’s Sant director. “It is an honor to partner with NASA to bring this dynamic view of Earth to museumgoers and connect people more deeply with their home planet.”
      Visitors also can explore Earth observing missions, changes in Earth’s landscape over time, and how climate is expected to change regionally through multiple interactive experiences. The exhibit will remain on display through 2028.
      “The Earth Information Center allows people to see our planet as we at NASA see it – an awe-inspiring and complex system of oceans, land, ice, atmosphere, and the life they support,” said Karen St. Germain, division director, Earth Sciences Division at NASA Headquarters in Washington. “We are thrilled that this collaboration puts NASA’s Earth science at the fingertips of Smithsonian visitors for the benefit of all.”
      With more than two dozen missions in orbit, NASA observes our planet’s oceans, land, ice, and atmosphere, and measure how a change in one drives change in others. NASA develops new ways to build long-term data records of how our planet evolves. The agency freely shares this unique knowledge and works with institutions around the world.
      As part of NASA’s ongoing mission to better understand our home planet, NASA created the Earth Information Center which draws insights from across all NASA centers and its federal partners – the National Oceanic and Atmospheric Administration, U.S. Geological Survey, U.S. Department of Agriculture, U.S. Agency for International Development, Environmental Protection Agency, and Federal Emergency Management Administration. It allows viewers to see how our home planet is changing and gives decision makers information to develop the tools they need to mitigate, adapt, and respond to those changes.
      NASA’s Earth Information Center is a virtual and physical space designed to aid people to make informed decisions on Earth’s environment and climate. It provides easily accessible Earth information, enabling global understanding of our changing planet.
      The expansion of the physical Earth Information Center at the Smithsonian National Museum of Natural History makes it the second location in the Washington area. The first is located at NASA Headquarters in Washington at 300 E St., SW.
      To learn more about the Earth Information Center, visit:
      https://earth.gov
      -end-
      Meira Bernstein / Elizabeth Vlock
      Headquarters, Washington
      202-358-1600
      meira.b.bernstein@nasa.gov / elizabeth.a.vlock@nasa.gov
      Share
      Details
      Last Updated Oct 07, 2024 EditorJessica TaveauLocationNASA Headquarters Related Terms
      Earth Climate Change View the full article
    • By NASA
      Learn Home Science Activation’s PLACES… Earth Science Overview Learning Resources Science Activation Teams SME Map Opportunities More Science Activation Stories Citizen Science   5 min read
      Science Activation’s PLACES Team Facilitates Third Professional Learning Institute
      The NASA Science Activation program’s Place-Based Learning to Advance Connections, Education, and Stewardship (PLACES) project supports middle and high school educators to engage students in data-rich Earth science learning through the integration of NASA data sets, images, classroom lessons, and other assets. This project draws on a place-based approach as a means to increase “data fluency” — the ability and confidence to make sense of and use data. This means knowing when, how, and why to use data for a specific purpose, such as solving problems and communicating ideas grounded in evidence.
      As part of this effort, PLACES facilitated its third Professional Learning (PL) Summer Institute (SI) for 22 educators at the Gulf of Maine Research Institute (GMRI) in Portland, Maine the week of August 12th, 2024. This is the third PL Summer Institute the PLACES team has facilitated, each focusing on engaging educators in place-based, data-rich teaching and learning with NASA data and resources.
      The GMRI PL development and facilitation was a collaborative co-design effort between two NASA Science Activation projects (PLACES led by WestEd and the Learning Ecosystems Northeast project led by GMRI) and colleagues from the Concord Consortium and NASA Langley Research Center. During this PL, teachers took part in community science projects developed by GMRI to incorporate youth in ongoing research projects, including a mix of field- and classroom-based experiences that explored the phenomena of Hemlock Woolly Adelgid (HWA) and the changes to intertidal crab populations – two invasive species that are proliferating as a result of climate change. During two field-based experiences, teachers gathered primary data using protocols from GMRI’s Ecosystem Investigation Network and the NASA-sponsored program, GLOBE (Global Learning and Observations to Benefit the Environment). Teachers then explored these primary data using Concord Consortium’s Common Online Data Analysis Platform (CODAP) to better understand the geographic and temporal spread of these species. To connect their local experiences to global happenings, teachers then explored secondary data sets, including those sourced from the My NASA Data (MND – also supported by NASA Science Activation as part of the GLOBE Mission Earth project) Earth System Explorer (e.g., Normalized Difference Vegetation Index, salinity, sea surface temperature). The facilitation team also used the MND Data Literacy Cubes to encourage teachers to consider a multitude of diverse questions about place, data, and the phenomena. The GLOBE protocols supplemented existing GMRI data collection protocols, presenting new opportunities for teachers already experienced with HWA and Green Crabs. The MND data and Data Literacy Cubes moved teachers from questions they generated as part of their primary data collection towards new knowledge.
      Daily feedback from teachers highlighted their appreciation for the responsiveness of the facilitation team, as well as a growing curiosity and desire for using NASA resources such as protocols from GLOBE and data from MND’s Earth System Explorer. This is exciting to see as the teachers transition from the Summer Institute into a virtual Community of Practice during the school year. The Community of Practice engages them in peer-to-peer collaboration and dialogue as they develop, test, and give feedback on their own place-based, data-rich experiences using NASA data and resources. So far, teachers are planning to tackle a variety of topics ranging from ocean chemistry to human connections to the environment. Teachers indicated their interest in “making place-based experiences meaningful to our unique populations of students and having cultural representation in the classroom,” and focusing on “cross-school collaboration.” Preliminary evaluation data indicated that 76% of teachers thought their experiences with NASA resources during the SI helped them identify ways to bring data into their classroom. 85% of teachers indicated they feel a greater connection to NASA and knowledge of NASA resources for enhancing student understanding and engagement in science. Moving into the fall, teachers will take part in a Community of Practice, where they will work to implement a place-based, data-rich moment in their individual classrooms. In the summer of 2025, teachers will take part in a second summer institute where they will continue to learn more about implementing place-based, data-rich instruction.
      The PLACES GMRI Summer Institute was made possible by a large co-design, collaborative effort across our partner organizations. This included:
      Facilitation Team: Catherine Bursk (GMRI), Meggie Harvey (GMRI), Sara Salisbury (GMRI), Daniel Damelin (Concord Consortium) In-person Facilitation Support Team: Leigh Peake (GMRI), Karen Lionberger (WestEd), Kristin Hunter-Thomson (Dataspire), Angela Rizzi (NASA Langley) In-Person Team Member Participants: Janet Struble and Kevin Czaikowski (GLOBE, University of Toledo), Svetlana Darche (WestEd) Virtual Observers: Kirsten Daehler, Nicole Wong, Leticia Perez (WestEd), Tracy Ostrom (GLOBE, UC Berkeley), Lori Rubino-Hare (NAU) Additional support: Frieda Reichsman (Concord Consortium), Barbie Buckner and Jessia Taylor (NASA Langley), Sean Ryan (NAU), Lauren Shollenberger (NAU) PLACES is supported by NASA under cooperative agreement award number 80NSSC22M0005 and is part of NASA’s Science Activation Portfolio. Learn more about how Science Activation connects NASA science experts, real content, and experiences with community leaders to do science in ways that activate minds and promote deeper understanding of our world and beyond: https://science.nasa.gov/learn
      Teachers at the GMRI summer institute review NDVI data ranging from 2002 to 2022 and identify patterns and trends. Share








      Details
      Last Updated Oct 04, 2024 Editor NASA Science Editorial Team Location NASA Langley Research Center Related Terms
      Earth Science Grades 5 – 8 for Educators Grades 9-12 for Educators Opportunities For Educators to Get Involved Science Activation Explore More
      2 min read Culturally Inclusive Planetary Engagement in Colorado


      Article


      21 hours ago
      40 min read GPM Celebrates Ten Years of Observing Precipitation for Science and Society


      Article


      1 day ago
      2 min read New NASA eClips VALUE Bundles for Learners with Varied Needs


      Article


      2 days ago
      Keep Exploring Discover More Topics From NASA
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Perseverance Rover


      This rover and its aerial sidekick were assigned to study the geology of Mars and seek signs of ancient microbial…


      Parker Solar Probe


      On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona…


      Juno


      NASA’s Juno spacecraft entered orbit around Jupiter in 2016, the first explorer to peer below the planet’s dense clouds to…

      View the full article
  • Check out these Videos

×
×
  • Create New...