Members Can Post Anonymously On This Site
Founding Hubble Institute Director to Receive National Medal of Science
-
Similar Topics
-
By NASA
This NASA/ESA Hubble Space Telescope image features the galaxy cluster Abell 209.ESA/Hubble & NASA, M. Postman, P. Kelly A massive, spacetime-warping cluster of galaxies is the setting of today’s NASA/ESA Hubble Space Telescope image. The galaxy cluster in question is Abell 209, located 2.8 billion light-years away in the constellation Cetus (the Whale).
This Hubble image of Abell 209 shows more than a hundred galaxies, but there’s more to this cluster than even Hubble’s discerning eye can see. Abell 209’s galaxies are separated by millions of light-years, and the seemingly empty space between the galaxies is filled with hot, diffuse gas that is visible only at X-ray wavelengths. An even more elusive occupant of this galaxy cluster is dark matter: a form of matter that does not interact with light. Dark matter does not absorb, reflect, or emit light, effectively making it invisible to us. Astronomers detect dark matter by its gravitational influence on normal matter. Astronomers surmise that the universe is comprised of 5% normal matter, 25% dark matter, and 70% dark energy.
Hubble observations, like the ones used to create this image, can help astronomers answer fundamental questions about our universe, including mysteries surrounding dark matter and dark energy. These investigations leverage the immense mass of a galaxy cluster, which can bend the fabric of spacetime itself and create warped and magnified images of background galaxies and stars in a process called gravitational lensing.
While this image lacks the dramatic rings that gravitational lensing can sometimes create, Abell 209 still shows subtle signs of lensing at work, in the form of streaky, slightly curved galaxies within the cluster’s golden glow. By measuring the distortion of these galaxies, astronomers can map the distribution of mass within the cluster, illuminating the underlying cloud of dark matter. This information, which Hubble’s fine resolution and sensitive instruments help to provide, is critical for testing theories of how our universe evolved.
Text Credit: ESA/Hubble
Image credit: ESA/Hubble & NASA, M. Postman, P. Kelly
View the full article
-
By NASA
Explore Hubble Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered Hubble and Artificial Intelligence Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts Multimedia Images Videos Sonifications Podcasts e-Books Online Activities 3D Hubble Models Lithographs Fact Sheets Posters Hubble on the NASA App Glossary News Hubble News Social Media Media Resources More 35th Anniversary Online Activities 2 min read
Hubble Digs Up Galactic Time Capsule
This NASA/ESA Hubble Space Telescope image features the globular cluster NGC 1786. ESA/Hubble & NASA, M. Monelli; Acknowledgment: M. H. Özsaraç This NASA/ESA Hubble Space Telescope image features the field of stars that is NGC 1786. This globular cluster is located in the Large Magellanic Cloud (LMC), a small satellite galaxy of the Milky Way Galaxy that is approximately 160,000 light-years away from Earth. NGC 1786 itself is in the constellation Dorado. It was discovered in the year 1835 by Sir John Herschel.
The data for this image comes from an observing program that compares old globular clusters in nearby dwarf galaxies — the LMC, the Small Magellanic Cloud, and the Fornax dwarf spheroidal galaxy — to globular clusters in the Milky Way galaxy. Our galaxy contains over 150 of these old, spherical collections of tightly-bound stars, which astronomers have studied in depth — especially with Hubble images like this one, which show them in previously unattainable detail. Being very stable and long-lived, globular clusters act as galactic time capsules, preserving stars from the earliest stages of a galaxy’s formation.
Astronomers once thought that stars in a globular cluster all formed together at about the same time, but the study of old globular clusters in our galaxy uncovered multiple populations of stars with different ages. To use globular clusters as historical markers, we must understand how they form and where these stars of varying ages come from. This observing program examined old globular clusters like NGC 1786 in these external galaxies to see if they, too, contain multiple populations of stars. This research can tell us more about how the LMC originally formed, but also the Milky Way Galaxy, too.
Text Credit: ESA/Hubble
Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contact:
Claire Andreoli (claire.andreoli@nasa.gov)
NASA’s Goddard Space Flight Center, Greenbelt, MD
Share
Details
Last Updated Jul 17, 2025 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms
Astrophysics Astrophysics Division Globular Clusters Goddard Space Flight Center Hubble Space Telescope Star Clusters Stars The Universe Keep Exploring Discover More Topics From Hubble
Hubble Space Telescope
Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.
Hubble’s Star Clusters
Science Behind the Discoveries
Hubble’s Night Sky Challenge
View the full article
-
By NASA
3 min read
NASA Citizen Science and Your Career: Stories of Exoplanet Watch Volunteers
Doing NASA Science brings many rewards. But can taking part in NASA citizen science help your career? To find out, we asked participants in NASA’s Exoplanet Watch project about their experiences. In this project, amateur astronomers work together with professionals to track planets around other stars.
First, we heard from professional software programmers. Right away, one of them told us about getting a new job through connections made in the project.
“I decided to create the exoplanet plugin, [for citizen science] since it was quite a lot of manual work to check which transits were available for your location. The exoplanet plugin and its users got me in contact with the Stellar group… Through this group, I got into contact with a company called OurSky and started working for them… the point is, I created a couple of plugins for free and eventually got a job at an awesome company.”
Another participant talked about honing their skills and growing their confidence through Exoplanet Watch.
“There were a few years when I wasn’t actively coding. However, Exoplanet Watch rekindled that spark…. Participating in Exoplanet Watch even gave me the confidence to prepare again for a technical interview at Meta—despite having been thoroughly defeated the first time I tried.”
Teachers and teaching faculty told us how Exoplanet Watch gives them the ability to better convey what scientific research is all about – and how the project motivates students!
“Exoplanet Watch makes it easy for undergraduate students to gain experience in data science and Python, which are absolutely necessary for graduate school and many industry jobs.”
“Experience with this collaborative work is a vital piece of the workforce development of our students who are seeking advanced STEM-related careers or ongoing education in STEM (Science, Technology, Engineering, & Mathematics) fields after graduation… Exoplanet Watch, in this way, is directly training NASA’s STEM workforce of tomorrow by allowing CUNY (The City University of New York) students to achieve the science goals that would otherwise be much more difficult without its resources.”
One aspiring academic shared how her participation on the science team side of the project has given her research and mentorship experience that strengthens her resume.
“I ended up joining the EpW team to contribute my expertise in stellar variability… My involvement with Exoplanet Watch has provided me with invaluable experience in mentoring a broad range of astronomy enthusiasts and working in a collaborative environment with people from around the world. … Being able to train others, interact in a team environment, and work independently are all critical skills in any work environment, but these specific experiences have also been incredibly valuable towards building my portfolio as I search for faculty positions around the USA.”
There are no guarantees, of course. What you get out of NASA citizen science depends on what you put in. But there is certainly magic to be found in the Exoplanet Watch project. As one student said:
“Help will always be found at Hogwarts, to those who need it.” Exoplanet Watch was definitely Hogwarts for me in my career as an astronomer!”
For more information about NASA and your career, check out NASA’s Surprisingly STEM series highlighting exciting and unexpected jobs at NASA, or come to NASA Career Day, a virtual event for students and educators. Participants must register by September 4, 2025. The interactive platform will be open from September 15-19, with live panels and events taking place on September 18.
Exoplanet Watch volunteer Bryan Martin
Credit: Bryan Martin
Share
Details
Last Updated Jul 16, 2025 Related Terms
Astrophysics Citizen Science Exoplanet Science Exoplanets Explore More
2 min read Hubble Snaps Galaxy Cluster’s Portrait
Article
5 days ago
8 min read NASA’s Webb Scratches Beyond Surface of Cat’s Paw for 3rd Anniversary
Article
6 days ago
2 min read Polar Tourists Give Positive Reviews to NASA Citizen Science in Antarctica
Article
1 week ago
View the full article
-
By NASA
This NASA Hubble Space Telescope image features a dense and dazzling array of blazing stars that form globular cluster ESO 591-12.NASA, ESA, and D. Massari (INAF — Osservatorio di Astrofisica e Scienza dello Spazio); Processing: Gladys Kober (NASA/Catholic University of America) A previously unexplored globular cluster glitters with multicolored stars in this NASA Hubble Space Telescope image. Globular clusters like this one, called ESO 591-12 or Palomar 8, are spherical collections of tens of thousands to millions of stars tightly bound together by gravity. Globular clusters generally form early in the galaxies’ histories in regions rich in gas and dust. Since the stars form from the same cloud of gas as it collapses, they typically hover around the same age. Strewn across this image of ESO 591-12 are a number of red and blue stars. The colors indicate their temperatures; red stars are cooler, while the blue stars are hotter.
Hubble captured the data used to create this image of ESO 591-12 as part of a study intended to resolve individual stars of the entire globular cluster system of the Milky Way. Hubble revolutionized the study of globular clusters since earthbound telescopes are unable to distinguish individual stars in the compact clusters. The study is part of the Hubble Missing Globular Clusters Survey, which targets 34 confirmed Milky Way globular clusters that Hubble has yet to observe.
The program aims to provide complete observations of ages and distances for all of the Milky Way’s globular clusters and investigate fundamental properties of still-unexplored clusters in the galactic bulge or halo. The observations will provide key information on the early stages of our galaxy, when globular clusters formed.
Image credit: NASA, ESA, and D. Massari (INAF — Osservatorio di Astrofisica e Scienza dello Spazio); Processing: Gladys Kober (NASA/Catholic University of America)
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.