Jump to content

Founding Hubble Institute Director to Receive National Medal of Science


Recommended Posts

Posted
low_STScI-H-p0514a-k-1340x520.png

Dr. Riccardo Giacconi, founding director of the Space Telescope Science Institute (STScI), will receive the 2003 National Medal of Science -- the United States' top scientific recognition -- for his work in X-ray astronomy and his outstanding leadership in the development of the STScI. The White House announced the list of recipients on February 14. Giacconi and the others will receive their medals in a White House ceremony on Monday, March 14.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Explore Hubble Science Hubble Space Telescope NASA’s Hubble Sees White… Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Universe Uncovered Hubble’s Partners in Science AI and Hubble Science Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Science Operations Astronaut Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts Multimedia Images Videos Sonifications Podcasts e-Books Online Activities 3D Hubble Models Lithographs Fact Sheets Posters Hubble on the NASA App Glossary News Hubble News Social Media Media Resources More 35th Anniversary Online Activities   5 Min Read NASA’s Hubble Sees White Dwarf Eating Piece of Pluto-Like Object
      This artist’s concept shows a white dwarf surrounded by a large debris disk. Debris from pieces of a captured, Pluto-like object is falling onto the white dwarf. Credits:
      Artwork: NASA, Tim Pyle (NASA/JPL-Caltech) In our nearby stellar neighborhood, a burned-out star is snacking on a fragment of a Pluto-like object. With its unique ultraviolet capability, only NASA’s Hubble Space Telescope could identify that this meal is taking place.
      The stellar remnant is a white dwarf about half the mass of our Sun, but that is densely packed into a body about the size of Earth. Scientists think the dwarf’s immense gravity pulled in and tore apart an icy Pluto analog from the system’s own version of the Kuiper Belt, an icy ring of debris that encircles our solar system. The findings were reported on September 18 in the Monthly Notices of the Royal Astronomical Society.
      The researchers were able to determine this carnage by analyzing the chemical composition of the doomed object as its pieces fell onto the white dwarf. In particular, they detected “volatiles” — substances with low boiling points — including carbon, sulphur, nitrogen, and a high oxygen content that suggests the strong presence of water.
      “We were surprised,” said Snehalata Sahu of the University of Warwick in the United Kingdom. Sahu led the data analysis of a Hubble survey of white dwarfs. “We did not expect to find water or other icy content. This is because the comets and Kuiper Belt-like objects are thrown out of their planetary systems early, as their stars evolve into white dwarfs. But here, we are detecting this very volatile-rich material. This is surprising for astronomers studying white dwarfs as well as exoplanets, planets outside our solar system.”
      This artist’s concept shows a white dwarf surrounded by a large debris disk. Debris from pieces of a captured, Pluto-like object is falling onto the white dwarf. Artwork: NASA, Tim Pyle (NASA/JPL-Caltech) Only with Hubble
      Using Hubble’s Cosmic Origins Spectrograph, the team found that the fragments were composed of 64 percent water ice. The fact that they detected so much ice meant that the pieces were part of a very massive object that formed far out in the star system’s icy Kuiper Belt analog. Using Hubble data, scientists calculated that the object was bigger than typical comets and may be a fragment of an exo-Pluto.
      They also detected a large fraction of nitrogen – the highest ever detected in white dwarf debris systems. “We know that Pluto’s surface is covered with nitrogen ices,” said Sahu. “We think that the white dwarf accreted fragments of the crust and mantle of a dwarf planet.”
      Accretion of these volatile-rich objects by white dwarfs is very difficult to detect in visible light. These volatile elements can only be detected with Hubble’s unique ultraviolet light sensitivity. In optical light, the white dwarf would appear ordinary.
      About 260 light-years away, the white dwarf is a relatively close cosmic neighbor. In the past, when it was a Sun-like star, it would have been expected to host planets and an analog to our Kuiper Belt.
      Like seeing our Sun in future
      Billions of years from now, when our Sun burns out and collapses to a white dwarf, Kuiper Belt objects will be pulled in by the stellar remnant’s immense gravity. “These planetesimals will then be disrupted and accreted,” said Sahu. “If an alien observer looks into our solar system in the far future, they might see the same kind of remains we see today around this white dwarf.”
      The team hopes to use NASA’s James Webb Space Telescope to detect molecular features of volatiles such as water vapor and carbonates by observing this white dwarf in infrared light. By further studying white dwarfs, scientists can better understand the frequency and composition of these volatile-rich accretion events.
      Sahu is also following the recent discovery of the interstellar comet 3I/ATLAS. She is eager to learn its chemical composition, especially its fraction of water. “These types of studies will help us learn more about planet formation. They can also help us understand how water is delivered to rocky planets,” said Sahu.
      Boris Gänsicke, of the University of Warwick and a visitor at Spain’s Instituto de Astrofisica de Canarias, was the principal investigator of the Hubble program that led to this discovery. “We observed over 500 white dwarfs with Hubble. We’ve already learned so much about the building blocks and fragments of planets, but I’ve been absolutely thrilled that we now identified a system that resembles the objects in the frigid outer edges of our solar system,” said Gänsicke. “Measuring the composition of an exo-Pluto is an important contribution toward our understanding of the formation and evolution of these bodies.”
      The Hubble Space Telescope has been operating for more than three decades and continues to make ground-breaking discoveries that shape our fundamental understanding of the universe. Hubble is a project of international cooperation between NASA and ESA (European Space Agency). NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope and mission operations. Lockheed Martin Space, based in Denver, also supports mission operations at Goddard. The Space Telescope Science Institute in Baltimore, which is operated by the Association of Universities for Research in Astronomy, conducts Hubble science operations for NASA.
      To learn more about Hubble, visit: https://science.nasa.gov/hubble 
      Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Related Images & Videos
      White Dwarf Accreting Icy Object (Illustration)
      This artist’s concept shows a white dwarf surrounded by a large debris disk. Debris from pieces of a captured, Pluto-like object is falling onto the white dwarf.




      Share








      Details
      Last Updated Sep 18, 2025 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Contact Media Claire Andreoli
      NASA’s Goddard Space Flight Center
      Greenbelt, Maryland
      claire.andreoli@nasa.gov
      Ann Jenkins
      Space Telescope Science Institute
      Baltimore, Maryland
      Ray Villard
      Space Telescope Science Institute
      Baltimore, Maryland
      Related Terms
      Hubble Space Telescope Astrophysics Division Dwarf Planets Goddard Space Flight Center The Kuiper Belt White Dwarfs
      Related Links and Documents
      Science Paper: Discovery of an icy and nitrogen-rich extra-solar planetesimal, PDF (674.84 KB)

      Keep Exploring Discover More Topics From Hubble
      Hubble Space Telescope


      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


      Hubble Science Highlights



      Hubble Images



      Hubble News


      View the full article
    • By NASA
      NASA Science News Conference on Three New Space Weather Missions (Sept. 21, 2025)
    • By NASA
      NASA/Jonny Kim NASA astronaut Zena Cardman processes bone cell samples inside the Kibo laboratory module’s Life Science Glovebox on Aug. 28, 2025, as part of an experiment that tests how microgravity affects bone-forming and bone-degrading cells and explore potential ways to prevent bone loss. This research could help protect astronauts on future long-duration missions to the Moon and Mars, while also advancing treatments for millions of people on Earth who suffer from osteoporosis.
      Image credit: NASA/Jonny Kim
      View the full article
    • By NASA
      A SpaceX Falcon 9 rocket carrying Northrop Grumman’s Cygnus XL spacecraft is launched on NASA’s Northrop Grumman Commercial Resupply Services 23 mission to the International Space Station on Sunday, Sept. 14, 2025.Credit: NASA NASA is sending more science, technology demonstrations, and crew supplies to the International Space Station following the successful launch of the agency’s Northrop Grumman Commercial Resupply Services 23 mission, or Northrop Grumman CRS-23.
      The company’s Cygnus XL spacecraft, carrying more than 11,000 pounds of cargo to the orbiting laboratory, lifted off at 6:11 p.m. EDT Sunday on a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Space Force Station in Florida. This mission is the first flight of the larger, more cargo-capable version of the solar-powered spacecraft. 
      Cygnus XL is scheduled to be captured at 6:35 a.m. on Wednesday, Sept. 17, by the Canadarm2 robotic arm, which NASA astronaut Jonny Kim will operate with assistance from NASA astronaut Zena Cardman. Following capture, the spacecraft will be installed to the Unity module’s Earth-facing port for cargo unloading.
      The resupply mission is carrying dozens of research experiments that will be conducted during Expedition 73, including materials to produce semiconductor crystals in space and equipment to develop improvements for cryogenic fuel tanks. The spacecraft also will deliver a specialized UV light system to prevent the growth of microbe communities that form in water systems and supplies to produce pharmaceutical crystals that could treat cancer and other diseases.
      These are just a sample of the hundreds of scientific investigations conducted aboard the station in the areas of biology and biotechnology, Earth and space science, physical sciences, as well as technology development and demonstrations. For nearly 25 years, NASA has supported a continuous U.S. human presence aboard the orbiting laboratory, where astronauts have learned to live and work in space for extended periods of time. The space station is a springboard for developing a low Earth economy and NASA’s next great leaps in exploration, including Artemis missions to the Moon and American astronaut missions to Mars.
      NASA’s arrival, capture, and installation coverage are as follows (all times Eastern and subject to change based on real-time operations):
      Wednesday, Sept. 17
      5 a.m. – Arrival coverage begins on NASA+, Amazon Prime, and more.
      6:35 a.m. – Capture of Cygnus XL with the space station’s robotic arm.
      8 a.m. – Installation coverage begins on NASA+, Amazon Prime, and more.
      All coverage times are estimates and could be adjusted based on operations after launch. Follow the space station blog for the most up-to-date information.
      Cygnus XL is scheduled to remain at the orbiting laboratory until March 2026, before it departs and disposes of several thousand pounds of trash through its re-entry into Earth’s atmosphere, where it will harmlessly burn up. The spacecraft is named the S.S. William “Willie” C. McCool, in honor of the NASA astronaut who perished in 2003 during the space shuttle Columbia accident.
      Learn more about this NASA commercial resupply mission at:
      https://www.nasa.gov/mission/nasas-northrop-grumman-crs-23/
      -end-
      Josh Finch / Jimi Russell
      Headquarters, Washington
      202-358-1100
      joshua.a.finch@nasa.gov / james.j.russell@nasa.gov
      Steven Siceloff
      Kennedy Space Center, Fla.
      321-876-2468
      steven.p.siceloff@nasa.gov
      Sandra Jones / Joseph Zakrzewski
      Johnson Space Center, Houston
      281-483-5111
      sandra.p.jones@nasa.gov / joseph.a.zakrzewski@nasa.gov
      Share
      Details
      Last Updated Sep 14, 2025 LocationNASA Headquarters Related Terms
      International Space Station (ISS) Commercial Resupply ISS Research Johnson Space Center Northrop Grumman Commercial Resupply View the full article
    • By NASA
      Explore Hubble Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Universe Uncovered Hubble’s Partners in Science AI and Hubble Science Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Science Operations Astronaut Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts Multimedia Images Videos Sonifications Podcasts e-Books Online Activities 3D Hubble Models Lithographs Fact Sheets Posters Hubble on the NASA App Glossary News Hubble News Social Media Media Resources More 35th Anniversary Online Activities 2 min read
      Hubble Surveys Cloudy Cluster
      This new NASA/ESA Hubble Space Telescope image features the nebula LMC N44C. ESA/Hubble & NASA, C. Murray, J. Maíz Apellániz This new NASA/ESA Hubble Space Telescope image features a cloudy starscape from an impressive star cluster. This scene is in the Large Magellanic Cloud, a dwarf galaxy situated about 160,000 light-years away in the constellations Dorado and Mensa. With a mass equal to 10–20% of the mass of the Milky Way, the Large Magellanic Cloud is the largest of the dozens of small galaxies that orbit our galaxy.
      The Large Magellanic Cloud is home to several massive stellar nurseries where gas clouds, like those strewn across this image, coalesce into new stars. Today’s image depicts a portion of the galaxy’s second-largest star-forming region, which is called N11. (The most massive and prolific star-forming region in the Large Magellanic Cloud, the Tarantula Nebula, is a frequent target for Hubble.) We see bright, young stars lighting up the gas clouds and sculpting clumps of dust with powerful ultraviolet radiation.
      This image marries observations made roughly 20 years apart, a testament to Hubble’s longevity. The first set of observations, which were carried out in 2002–2003, capitalized on the exquisite sensitivity and resolution of the then-newly-installed Advanced Camera for Surveys. Astronomers turned Hubble toward the N11 star cluster to do something that had never been done before at the time: catalog all the stars in a young cluster with masses between 10% of the Sun’s mass and 100 times the Sun’s mass.
      The second set of observations came from Hubble’s newest camera, the Wide Field Camera 3. These images focused on the dusty clouds that permeate the cluster, providing us with a new perspective on cosmic dust.
      Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contact:
      Claire Andreoli (claire.andreoli@nasa.gov)
      NASA’s Goddard Space Flight Center, Greenbelt, MD
      Share








      Details
      Last Updated Sep 11, 2025 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms
      Astrophysics Astrophysics Division Goddard Space Flight Center Hubble Space Telescope Nebulae Star-forming Nebulae Keep Exploring Discover More Topics From Hubble
      Hubble Space Telescope


      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


      Hubble’s Nebulae


      These ethereal veils of gas and dust tell the story of star birth and death.


      Hubble’s Night Sky Challenge



      35 Years of Hubble Images


      View the full article
  • Check out these Videos

×
×
  • Create New...