Members Can Post Anonymously On This Site
Women of NASA Langley Research Center
-
Similar Topics
-
By NASA
2 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
NASA MSFC HERC is the annual engineering competition – one of NASA’s longest standing challenges – held its concluding event April 19 and April 20, at the U.S. Space & Rocket Center in Huntsville, near NASA’s Marshall Space Flight Center.NASA NASA has selected 75 student teams to begin an engineering design challenge to build rovers that will compete next spring at the U.S. Space and Rocket Center near the agency’s Marshall Space Flight Center in Huntsville, Alabama. The competition is one of the agency’s Artemis Student Challenges, encouraging students to pursue degrees and careers in science, technology, engineering, and mathematics (STEM).
Recognized as NASA’s leading international student challenge, the 31st annual Human Exploration Rover Challenge (HERC) aims to put competitors in the mindset of NASA’s Artemis campaign as they pitch an engineering design for a lunar terrain vehicle which simulates astronauts piloting a vehicle, exploring the lunar surface while overcoming various obstacles.
Participating teams represent 35 colleges and universities, 38 high schools, and two middle schools from 20 states, Puerto Rico, and 16 other nations from around the world. The 31st annual Human Exploration Rover Challenge (HERC) is scheduled to begin on April 11, 2025. The challenge is managed by NASA’s Southeast Regional Office of STEM Engagement at NASA Marshall.
Following a 2024 competition that garnered international attention, NASA expanded the challenge to include a remote-control division, Remote-Operated Vehicular Research, and invited middle school students to participate. The 2025 HERC Handbook includes guidelines for the new remote-control division and updates for the human-powered division.
NASA’s Artemis Student Challenges reflects the goals of the Artemis campaign, which seeks to land the first woman and first person of color on the Moon while establishing a long-term presence for science and exploration.
More than 1,000 students with 72 teams from around the world participated in the 2024 challenge as HERC celebrated its 30th anniversary as a NASA competition. Since its inception in 1994, more than 15,000 students have participated in HERC – with many former students now working at NASA, or within the aerospace industry.
To learn more about HERC, please visit:
HERC Website Taylor Goodwin
Marshall Space Flight Center, Huntsville, Ala.
256.544.0034
taylor.goodwin@nasa.gov
Share
Details
Last Updated Oct 04, 2024 EditorBeth RidgewayLocationMarshall Space Flight Center Related Terms
Marshall Space Flight Center Explore More
20 min read The Marshall Star for October 2, 2024
Article 2 days ago 29 min read The Marshall Star for September 25, 2024
Article 1 week ago 3 min read NASA Michoud Continues Work on Evolved Stage of SLS Rocket for Future Artemis Missions
Article 1 week ago Keep Exploring Discover Related Topics
NASA Student Launch Challenge
Middle/high school and college-level student teams design, build, test, and launch a high-powered rocket carrying a scientific or engineering payload.
NASA Human Exploration Rover Challenge
Teams of high school and college students design, develop, build, and test human-powered rovers capable of traversing challenging terrain.
NASA STEM Opportunities and Activities For Students
Marshall Space Flight Center
View the full article
-
By NASA
5 min read
NASA’s LRO: Lunar Ice Deposits are Widespread
Deposits of ice in lunar dust and rock (regolith) are more extensive than previously thought, according to a new analysis of data from NASA’s LRO (Lunar Reconnaissance Orbiter) mission. Ice would be a valuable resource for future lunar expeditions. Water could be used for radiation protection and supporting human explorers, or broken into its hydrogen and oxygen components to make rocket fuel, energy, and breathable air.
Prior studies found signs of ice in the larger permanently shadowed regions (PSRs) near the lunar South Pole, including areas within Cabeus, Haworth, Shoemaker and Faustini craters. In the new work, “We find that there is widespread evidence of water ice within PSRs outside the South Pole, towards at least 77 degrees south latitude,” said Dr. Timothy P. McClanahan of NASA’s Goddard Space Flight Center in Greenbelt, Maryland, and lead author of a paper on this research published October 2 in the Planetary Science Journal.
The study further aids lunar mission planners by providing maps and identifying the surface characteristics that show where ice is likely and less likely to be found, with evidence for why that should be. “Our model and analysis show that greatest ice concentrations are expected to occur near the PSRs’ coldest locations below 75 Kelvin (-198°C or -325°F) and near the base of the PSRs’ poleward-facing slopes,” said McClanahan.
This illustration shows the distribution of permanently shadowed regions (in blue) on the Moon poleward of 80 degrees South latitude. They are superimposed on a digital elevation map of the lunar surface (grey) from the Lunar Orbiter Laser Altimeter instrument on board NASA’s Lunar Reconnaissance Orbiter spacecraft. NASA/GSFC/Timothy P. McClanahan “We can’t accurately determine the volume of the PSRs’ ice deposits or identify if they might be buried under a dry layer of regolith. However, we expect that for each surface 1.2 square yards (square meter) residing over these deposits there should be at least about five more quarts (five more liters) of ice within the surface top 3.3 feet (meter), as compared to their surrounding areas,” said McClanahan. The study also mapped where fewer, smaller, or lower-concentration ice deposits would be expected, occurring primarily towards warmer, periodically illuminated areas.
Ice could become implanted in lunar regolith through comet and meteor impacts, released as vapor (gas) from the lunar interior, or be formed by chemical reactions between hydrogen in the solar wind and oxygen in the regolith. PSRs typically occur in topographic depressions near the lunar poles. Because of the low Sun angle, these areas haven’t seen sunlight for up to billions of years, so are perpetually in extreme cold. Ice molecules are thought to be repeatedly dislodged from the regolith by meteorites, space radiation, or sunlight and travel across the lunar surface until they land in a PSR where they are entrapped by extreme cold. The PSR’s continuously cold surfaces can preserve ice molecules near the surface for perhaps billions of years, where they may accumulate into a deposit that is rich enough to mine. Ice is thought to be quickly lost on surfaces that are exposed to direct sunlight, which precludes their accumulations.
The team used LRO’s Lunar Exploration Neutron Detector (LEND) instrument to detect signs of ice deposits by measuring moderate-energy, “epithermal” neutrons. Specifically, the team used LEND’s Collimated Sensor for Epithermal Neutrons (CSETN) that has a fixed 18.6-mile (30-kilometer) diameter field-of-view. Neutrons are created by high-energy galactic cosmic rays that come from powerful deep-space events such as exploding stars, that impact the lunar surface, break up regolith atoms, and scatter subatomic particles called neutrons. The neutrons, which can originate from up to about a 3.3-foot (meter’s) depth, ping-pong their way through the regolith, running into other atoms. Some get directed into space, where they can be detected by LEND. Since hydrogen is about the same mass as a neutron, a collision with hydrogen causes the neutron to lose relatively more energy than a collision with most common regolith elements. So, where hydrogen is present in regolith, its concentration creates a corresponding reduction in the observed number of moderate-energy neutrons.
“We hypothesized that if all PSRs have the same hydrogen concentration, then CSETN should proportionally detect their hydrogen concentrations as a function of their areas. So, more hydrogen should be observed towards the larger-area PSRs,” said McClanahan.
The model was developed from a theoretical study that demonstrated how similarly hydrogen-enhanced PSRs would be detected by CSETNs fixed-area field-of-view. The correlation was demonstrated using the neutron emissions from 502 PSRs with areas ranging from 1.5 square miles (4 km2) to 417 square miles (1079 km2) that contrasted against their surrounding less hydrogen-enhanced areas. The correlation was expectedly weak for the small PSRs but increased towards the larger-area PSRs.
The research was sponsored by the LRO project science team, NASA’s Goddard Space Flight Center’s Artificial Intelligence Working Group, and NASA grant award number 80GSFC21M0002. The study was conducted using NASA’s LRO Diviner radiometer and Lunar Orbiter Laser Altimeter instruments. The LEND instrument was developed by the Russian Space Agency, Roscosmos by its Space Research Institute (IKI). LEND was integrated to the LRO spacecraft at the NASA Goddard Space Flight Center. LRO is managed by NASA’s Goddard Space Flight Center in Greenbelt, Maryland, for the Science Mission Directorate at NASA Headquarters in Washington.
Share
Details
Last Updated Oct 03, 2024 Editor wasteigerwald Contact wasteigerwald william.a.steigerwald@nasa.gov Location Goddard Space Flight Center Related Terms
Earth’s Moon Lunar Reconnaissance Orbiter (LRO) Uncategorized Explore More
6 min read NASA’s LRO Discovers Lunar Hydrogen More Abundant on Moon’s Pole-Facing Slopes
Space travel is difficult and expensive – it would cost thousands of dollars to launch…
Article
10 years ago
4 min read NASA’s LRO Finds Lunar Pits Harbor Comfortable Temperatures
NASA-funded scientists have discovered shaded locations within pits on the Moon that always hover around…
Article
2 years ago
4 min read NASA’s LRO Spacecraft Captures Images of LADEE’s Impact Crater
NASA’S Lunar Reconnaissance Orbiter (LRO) spacecraft has spied a new crater on the lunar surface;…
Article
10 years ago
View the full article
-
By NASA
Not all heroes wear capes (or blue flight suits). At Johnson Space Center in Houston, the heroes might train their colleagues how to safely respond and evacuate their office in an emergency. They might investigate office accidents and remove potential hazards. Or they might help fix a leaky bathroom sink or a broken coffee maker.
Those heroes are approximately 135 on-site facility managers who ensure the safety and health of every building and its occupants.
Established in 2009, the Facility Manager program encompasses buildings at Johnson Space Center, Sonny Carter Training Facility, and Ellington Field. Each building has a primary Facility Manager and an alternate. These individuals develop emergency action plans and serve as facility fire wardens. They post safety alerts, notices of renovation and construction work, and share information about impending interruptions to building access or utilities. They also coordinate between building occupants, safety personnel, facility operations, and emergency responders as needed.
“We are a relatively close-knit community and rely on each other for assistance and advice, especially from the veteran facility managers,” said Vanessa Jordan, the lead facility manager for the entire Johnson site. Her role, and that of Alternate Lead Facility Manager Darrell Palmer, is to establish policies and procedures for the Facility Manager program, ensuring that all applicable safety and health regulations are disseminated and enforced site wide.
Johnson Space Center Lead Facility Manager Vanessa Jordan (left) and Alternate Lead Facility Manager Darrell Palmer. “We are responsible for advising the facility managers on new and current policies and regulations relating to the safety and security of the buildings and their occupants,” Jordan explained. “We also inform them of changes in policies or procedures and happenings around the center that affect the buildings and occupants, such as road closures or hurricanes.” Jordan and Palmer oversee Facility Manager training, as well. They provide bi-annual training for new facility managers and periodic forums with subject matter experts on topics relevant to the team’s responsibilities.
“We are available to address any questions or concerns the facility managers may have regarding their role, buildings, or occupants,” she said. “We are the liaison and advocate for them with their organizations, my organization (which controls the program), the center, and our stakeholders.”
Jordan is also a facility engineer in the Center Operations Directorate’s Facilities Management and Operations Division. She joined Johnson’s team in 2008 after working for four years at NASA Headquarters in Washington, D.C. She served as Johnson’s facility manager coordinator for seven years before becoming the lead in 2019.
“I enjoy helping, meeting people, and developing relationships,” she said. “Even though I do a lot of routine work, there is something new to experience, deal with, or learn every day.”
Helping and connecting with others is what Angel Olmedo enjoys most about being a facility manager. “There’s no greater sense of purpose than being the person people rely on to find the help or solutions they need to finish their day strong and productive,” he said. “I’ve learned new skills and had a chance to meet and interact with a lot more people than I did before.”
Angel Olmedo Olmedo has worked at Johnson for nearly five years on the Human Space Flight Technical Integration Contract. In the spring of 2024, he was offered the opportunity to become the facility manager for buildings 4 south and 4 north, and the alternate facility manager for building 17. “During my first few years working here at Johnson, I enjoyed helping people get solutions to their technical problems – be they application related, access issues, or credentials,” he said. “I found that in becoming a facility manager I can continue to do something similar in a whole new way.”
Sid Dickerson has been the prime facility manager for building 17 and alternate for buildings 4 south and 4 north since November 2022. An IT specialist and property custodian at Johnson for more than 30 years, Dickerson takes pride in resolving issues quickly and efficiently and strives to maintain excellent customer feedback. “I want to be the best facility manager for my employer and customers as I help the facility achieve maintenance, cleaning, health and safety and scheduling goals,” he said. He added that working with a team of engineers, IT specialists, and maintenance staff to modernize the building 17 elevators was one of his favorite experiences to date.
Siegfried DickersonNASA/Robert Markowitz Michael Meadows – facility manager for buildings 10, 9 south, and 260 – was inspired to join the Johnson team while delivering newspapers onsite. An Alvin Community College student at the time, Meadows noticed a facility manager plaque on the wall of Johnson’s External Relations Office. “I knew that with hard work and dedication, I would one day become a Johnson employee and support flight and see my photo on that wall!”
Meadows began working at Johnson in 1999 and has been a facility manager for 23 years. He received a Silver Snoopy Award in May 2011 in recognition of the support he provided to the International Space Station Program as the manager for Johnson’s manufacturing facilities.
Michael MeadowsNASA/Robert Markowitz Some Johnson team members are hired specifically for a facility manager position. Others may volunteer or be appointed to the role by their organization’s management. Regardless of how they became a facility manager, each person must complete an initial and a refresher training covering topics such as hazard identification and mitigation, energy conservation, security, and legal considerations. Additional training may be required depending on building assignments. Once fully trained, facility managers may stay in that role as long as they work at Johnson.
The most rewarding part of being a facility manager, said Meadows, is “the feeling you get when you keep up with the facility and make that a great home for all the occupants every day.”
Curious about all of the roles available at NASA? Visit our Careers site to explore open opportunities and find your place with us!
View the full article
-
By NASA
Watch how the three stars in the system called TIC 290061484 eclipse each other over about 75 days. The line at the bottom is the plot of the system’s brightness over time, as seen by TESS (Transiting Exoplanet Survey Satellite). The inset shows the system from above.
NASA’s Goddard Space Flight Center Professional and amateur astronomers teamed up with artificial intelligence to find an unmatched stellar trio called TIC 290061484, thanks to cosmic “strobe lights” captured by NASA’s TESS (Transiting Exoplanet Survey Satellite).
The system contains a set of twin stars orbiting each other every 1.8 days, and a third star that circles the pair in just 25 days. The discovery smashes the record for shortest outer orbital period for this type of system, set in 1956, which had a third star orbiting an inner pair in 33 days.
“Thanks to the compact, edge-on configuration of the system, we can measure the orbits, masses, sizes, and temperatures of its stars,” said Veselin Kostov, a research scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, and the SETI Institute in Mountain View, California. “And we can study how the system formed and predict how it may evolve.”
A paper, led by Kostov, describing the results was published in The Astrophysical Journal Oct. 2.
This artist’s concept illustrates how tightly the three stars in the system called TIC 290061484 orbit each other. If they were placed at the center of our solar system, all the stars’ orbits would be contained a space smaller than Mercury’s orbit around the Sun. The sizes of the triplet stars and the Sun are also to scale.NASA’s Goddard Space Flight Center Flickers in starlight helped reveal the tight trio, which is located in the constellation Cygnus. The system happens to be almost flat from our perspective. This means the stars each cross right in front of, or eclipse, each other as they orbit. When that happens, the nearer star blocks some of the farther star’s light.
Using machine learning, scientists filtered through enormous sets of starlight data from TESS to identify patterns of dimming that reveal eclipses. Then, a small team of citizen scientists filtered further, relying on years of experience and informal training to find particularly interesting cases.
These amateur astronomers, who are co-authors on the new study, met as participants in an online citizen science project called Planet Hunters, which was active from 2010 to 2013. The volunteers later teamed up with professional astronomers to create a new collaboration called the Visual Survey Group, which has been active for over a decade.
“We’re mainly looking for signatures of compact multi-star systems, unusual pulsating stars in binary systems, and weird objects,” said Saul Rappaport, an emeritus professor of physics at MIT in Cambridge. Rappaport co-authored the paper and has helped lead the Visual Survey Group for more than a decade. “It’s exciting to identify a system like this because they’re rarely found, but they may be more common than current tallies suggest.” Many more likely speckle our galaxy, waiting to be discovered.
Partly because the stars in the newfound system orbit in nearly the same plane, scientists say it’s likely very stable despite their tight configuration (the trio’s orbits fit within a smaller area than Mercury’s orbit around the Sun). Each star’s gravity doesn’t perturb the others too much, like they could if their orbits were tilted in different directions.
But while their orbits will likely remain stable for millions of years, “no one lives here,” Rappaport said. “We think the stars formed together from the same growth process, which would have disrupted planets from forming very closely around any of the stars.” The exception could be a distant planet orbiting the three stars as if they were one.
As the inner stars age, they will expand and ultimately merge, triggering a supernova explosion in around 20 to 40 million years.
In the meantime, astronomers are hunting for triple stars with even shorter orbits. That’s hard to do with current technology, but a new tool is on the way.
This graphic highlights the search areas of three transit-spotting missions: NASA’s upcoming Nancy Grace Roman Space Telescope, TESS (the Transiting Exoplanet Survey Satellite), and the retired Kepler Space Telescope. Kepler found 13 triply eclipsing triple star systems, TESS has found more than 100 so far, and astronomers expect Roman to find more than 1,000.NASA’s Goddard Space Flight Center Images from NASA’s upcoming Nancy Grace Roman Space Telescope will be much more detailed than TESS’s. The same area of the sky covered by a single TESS pixel will fit more than 36,000 Roman pixels. And while TESS took a wide, shallow look at the entire sky, Roman will pierce deep into the heart of our galaxy where stars crowd together, providing a core sample rather than skimming the whole surface.
“We don’t know much about a lot of the stars in the center of the galaxy except for the brightest ones,” said Brian Powell, a co-author and data scientist at Goddard. “Roman’s high-resolution view will help us measure light from stars that usually blur together, providing the best look yet at the nature of star systems in our galaxy.”
And since Roman will monitor light from hundreds of millions of stars as part of one of its main surveys, it will help astronomers find more triple star systems in which all the stars eclipse each other.
“We’re curious why we haven’t found star systems like these with even shorter outer orbital periods,” said Powell. “Roman should help us find them and bring us closer to figuring out what their limits might be.”
Roman could also find eclipsing stars bound together in even larger groups — half a dozen, or perhaps even more all orbiting each other like bees buzzing around a hive.
“Before scientists discovered triply eclipsing triple star systems, we didn’t expect them to be out there,” said co-author Tamás Borkovits, a senior research fellow at the Baja Observatory of The University of Szeged in Hungary. “But once we found them, we thought, well why not? Roman, too, may reveal never-before-seen categories of systems and objects that will surprise astronomers.”
TESS is a NASA Astrophysics Explorer mission managed by NASA Goddard and operated by MIT in Cambridge, Massachusetts. Additional partners include Northrop Grumman, based in Falls Church, Virginia; NASA’s Ames Research Center in California’s Silicon Valley; the Center for Astrophysics | Harvard & Smithsonian in Cambridge, Massachusetts; MIT’s Lincoln Laboratory; and the Space Telescope Science Institute in Baltimore. More than a dozen universities, research institutes, and observatories worldwide are participants in the mission.
NASA’s citizen science projects are collaborations between scientists and interested members of the public and do not require U.S. citizenship. Through these collaborations, volunteers (known as citizen scientists) have helped make thousands of important scientific discoveries. To get involved with a project, visit NASA’s Citizen Science page.
Download additional images and video from NASA’s Scientific Visualization Studio.
By Ashley Balzer
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Media Contact:
Claire Andreoli
301-286-1940
claire.andreoli@nasa.gov
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Share
Details
Last Updated Oct 02, 2024 Related Terms
TESS (Transiting Exoplanet Survey Satellite) Astrophysics Binary Stars Galaxies, Stars, & Black Holes Goddard Space Flight Center Nancy Grace Roman Space Telescope Science & Research Stars The Universe View the full article
-
By NASA
Space for Earth is an immersive experience that is part of the Earth Information Center. Credit: NASA Media is invited to preview and interview NASA leadership ahead of the opening of the Earth Information Center at the Smithsonian National Museum of Natural History at 10 a.m. EDT, Monday, Oct. 7.
The 2,000-square-foot exhibit includes a 32-foot-long, 12-foot-high video wall displaying Earth science data visualizations and videos, an interpretive panel showing Earth’s connected systems, information on our changing world, and an overview of how NASA and the Smithsonian study our home planet. Visitors also can explore Earth observing missions, changes in Earth’s landscape over time, and how climate is expected to change regionally through multiple interactive experiences.
The event will take place at the Smithsonian National Museum of Natural History 1000 Constitution Ave. NW, Washington from 10 a.m. to 3 p.m. Members of the media interested in attending should email Liz Vlock at: elizabeth.a.vlock@nasa.gov. NASA’s media accreditation policy is available online.
Participants will be available for media interviews starting at the following times:
10 a.m.: NASA Administrator Bill Nelson 10 a.m.: Kirk Johnson, Sant director, Museum of Natural History 10:30 a.m.: Karen St. Germain, division director, NASA Earth Sciences Division 10:30 a.m.: Julie Robinson, deputy director, NASA Earth Sciences Division The Earth Information Center draws insights from across all NASA centers and its fellow partners – National Oceanic and Atmospheric Administration, U.S. Geological Survey, U.S. Department of Agriculture, U.S. Agency for International Development, Environmental Protection Agency, and Federal Emergency Management Administration. It allows viewers to see how our home planet is changing and gives decision makers information to develop the tools they need to mitigate, adapt, and respond to climate change.
NASA’s Earth Information Center is a virtual and physical space designed to aid people to make informed decisions on Earth’s environment and climate. It provides easily accessible, readily usable, and scalable Earth information – enabling global understanding of our changing planet.
The expansion of the physical Earth Information Center at the Smithsonian National Museum of Natural History Museum makes it the second location in the Washington area. The first is located at NASA Headquarters in Washington at 300 E St., SW.
To learn more about the Earth Information Center visit:
https://earth.gov
-end-
Elizabeth Vlock
Headquarters, Washington
202-358-1600
elizabeth.a.vlock@nasa.gov
Share
Details
Last Updated Sep 30, 2024 LocationNASA Headquarters Related Terms
Earth Science Division Earth Science NASA Headquarters Science Mission Directorate View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.