Jump to content

Multiple Spacecraft Tell the Story of One Giant Solar Storm


Recommended Posts

  • Publishers
Posted

5 min read

Multiple Spacecraft Tell the Story of One Giant Solar Storm

April 17, 2021, was a day like any other day on the Sun, until a brilliant flash erupted and an enormous cloud of solar material billowed away from our star. Such outbursts from the Sun are not unusual, but this one was unusually widespread, hurling high-speed protons and electrons at velocities nearing the speed of light and striking several spacecraft across the inner solar system.

In fact, it was the first time such high-speed protons and electrons – called solar energetic particles (SEPs) – were observed by spacecraft at five different, well-separated locations between the Sun and Earth as well as by spacecraft orbiting Mars. And now these diverse perspectives on the solar storm are revealing that different types of potentially dangerous SEPs can be blasted into space by different solar phenomena and in different directions, causing them to become widespread.

An animation shows a white cloud of material billowing away from the Sun (which is covered by a black disk at the center) toward the left side of the image, set against a red background with a couple dozen stars. The top says
On April 17, 2021, one of the Solar Terrestrial Relations Observatory (STEREO) spacecraft captured this view of a coronal mass ejection billowing away from the Sun (which is covered by the black disk at center to better see features around it). Learn more.
NASA/STEREO-A/COR2

“SEPs can harm our technology, such as satellites, and disrupt GPS,” said Nina Dresing of the Department of Physics and Astronomy, University of Turku in Finland. “Also, humans in space or even on airplanes on polar routes can suffer harmful radiation during strong SEP events.”

Scientists like Dresing are eager to find out where these particles come from exactly – and what propels them to such high speeds – to better learn how to protect people and technology in harm’s way. Dresing led a team of scientists that analyzed what kinds of particles struck each spacecraft and when. The team published its results in the journal Astronomy & Astrophysics.

Currently on its way to Mercury, the BepiColombo spacecraft, a joint mission of ESA (the European Space Agency) and JAXA (Japan Aerospace Exploration Agency), was closest to the blast’s direct firing line and was pounded with the most intense particles. At the same time, NASA’s Parker Solar Probe and ESA’s Solar Orbiter were on opposite sides of the flare, but Parker Solar Probe was closer to the Sun, so it took a harder hit than Solar Orbiter did. Next in line was one of NASA’s two Solar Terrestrial Relations Observatory (STEREO) spacecraft, STEREO-A, followed by the NASA/ESA Solar and Heliospheric Observatory (SOHO) and NASA’s Wind spacecraft, which were closer to Earth and well away from the blast. Orbiting Mars, NASA’s MAVEN and ESA’s Mars Express spacecraft were the last to sense particles from the event.

A diagram shows a circle representing the solar system with the Sun (not shown) in the center of the circle and gray lines radiating from the center to the edge of the circle. Degree labels, from 0 degrees to 315 degrees, appear at the end of the lines just outside the circle. The circle is shaded in blue from roughly 95 degrees to 315 degrees. In various places throughout the shaded area are dots representing STEREO A, BepiColombo, Parker Solar Probe, Solar Orbiter, Earth, and Mars. A short black arrow extends from the center of the circle toward the upper left, between BepiColombo and Solar Orbiter. At the top the text
This diagram shows the positions of individual spacecraft, as well as Earth and Mars, during the solar outburst on April 17, 2021. The Sun is at the center. The black arrow shows the direction of the initial solar flare. Several spacecraft detected solar energetic particles (SEPs) over 210 degrees around the Sun (blue shaded area).
Solar-MACH

Altogether, the particles were detected over 210 longitudinal degrees of space (almost two-thirds of the way around the Sun) – which is a much wider angle than typically covered by solar outbursts. Plus, each spacecraft recorded a different flood of electrons and protons at its location. The differences in the arrival and characteristics of the particles recorded by the various spacecraft helped the scientists piece together when and under what conditions the SEPs were ejected into space.

These clues suggested to Dresing’s team that the SEPs were not blasted out by a single source all at once but propelled in different directions and at different times potentially by different types of solar eruptions.

“Multiple sources are likely contributing to this event, explaining its wide distribution,” said team member Georgia de Nolfo, a heliophysics research scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “Also, it appears that, for this event, protons and electrons may come from different sources.”

The team concluded that the electrons were likely driven into space quickly by the initial flash of light – a solar flare – while the protons were pushed along more slowly, likely by a shock wave from the cloud of solar material, or coronal mass ejection.

“This is not the first time that people have conjectured that electrons and protons have had different sources for their acceleration,” de Nolfo said. “This measurement was unique in that the multiple perspectives enabled scientists to separate the different processes better, to confirm that electrons and protons may originate from different processes.”

In addition to the flare and coronal mass ejection, spacecraft recorded four groups of radio bursts from the Sun during the event, which could have been accompanied by four different particle blasts in different directions. This observation could help explain how the particles became so widespread.

“We had different distinct particle injection episodes – which went into significantly different directions – all contributing together to the widespread nature of the event,” Dressing said.

“This event was able to show how important multiple perspectives are in untangling the complexity of the event,” de Nolfo said.

These results show the promise of future NASA heliophysics missions that will use multiple spacecraft to study widespread phenomena, such as the Geospace Dynamics Constellation (GDC), SunRISE, PUNCH, and HelioSwarm. While single spacecraft can reveal conditions locally, multiple spacecraft orbiting in different locations provide deeper scientific insight and offer a more complete picture of what’s happening in space and around our home planet.

It also previews the work that will be done by future missions such as MUSE, IMAP, and ESCAPADE, which will study explosive solar events and the acceleration of particles into the solar system.

by Vanessa Thomas
NASA’s Goddard Space Flight Center, Greenbelt, Md.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Explore This Section Exoplanets Home Exoplanets Overview Exoplanets Facts Types of Exoplanets Stars What is the Universe Search for Life The Big Questions Are We Alone? Can We Find Life? The Habitable Zone Why We Search Target Star Catalog Discoveries Discoveries Dashboard How We Find and Characterize Missions People Exoplanet Catalog Immersive The Exoplaneteers Exoplanet Travel Bureau 5 Ways to Find a Planet Strange New Worlds Universe of Monsters Galaxy of Horrors News Stories Blog Resources Get Involved Glossary Eyes on Exoplanets Exoplanet Watch More Multimedia ExEP This artist’s concept pictures the planets orbiting Barnard’s Star, as seen from close to the surface of one of them. Image credit: International Gemini Observatory/NOIRLab/NSF/AURA/P. Marenfeld The Discovery
      Four rocky planets much smaller than Earth orbit Barnard’s Star, the next closest to ours after the three-star Alpha Centauri system. Barnard’s is the nearest single star.
      Key Facts
      Barnard’s Star, six light-years away, is notorious among astronomers for a history of false planet detections. But with the help of high-precision technology, the latest discovery — a family of four — appears to be solidly confirmed. The tiny size of the planets is also remarkable: Capturing evidence of small worlds at great distance is a tall order, even using state-of-the-art instruments and observational techniques.
      Details
      Watching for wobbles in the light from a star is one of the leading methods for detecting exoplanets — planets orbiting other stars. This “radial velocity” technique tracks subtle shifts in the spectrum of starlight caused by the gravity of a planet pulling its star back and forth as the planet orbits. But tiny planets pose a major challenge: the smaller the planet, the smaller the pull. These four are each between about a fifth and a third as massive as Earth. Stars also are known to jitter and quake, creating background “noise” that potentially could swamp the comparatively quiet signals from smaller, orbiting worlds.
      Astronomers measure the back-and-forth shifting of starlight in meters per second; in this case the radial velocity signals from all four planets amount to faint whispers — from 0.2 to 0.5 meters per second (a person walks at about 1 meter per second). But the noise from stellar activity is nearly 10 times larger at roughly 2 meters per second.
      How to separate planet signals from stellar noise? The astronomers made detailed mathematical models of Barnard’s Star’s quakes and jitters, allowing them to recognize and remove those signals from the data collected from the star.
      The new paper confirming the four tiny worlds — labeled b, c, d, and e — relies on data from MAROON-X, an “extreme precision” radial velocity instrument attached to the Gemini Telescope on the Maunakea mountaintop in Hawaii. It confirms the detection of the “b” planet, made with previous data from ESPRESSO, a radial velocity instrument attached to the Very Large Telescope in Chile. And the new work reveals three new sibling planets in the same system.
      Fun Facts
      These planets orbit their red-dwarf star much too closely to be habitable. The closest planet’s “year” lasts a little more than two days; for the farthest planet, it’s is just shy of seven days. That likely makes them too hot to support life. Yet their detection bodes well in the search for life beyond Earth. Scientists say small, rocky planets like ours are probably the best places to look for evidence of life as we know it. But so far they’ve been the most difficult to detect and characterize. High-precision radial velocity measurements, combined with more sharply focused techniques for extracting data, could open new windows into habitable, potentially life-bearing worlds.
      Barnard’s star was discovered in 1916 by Edward Emerson Barnard, a pioneering astrophotographer.
      The Discoverers
      An international team of scientists led by Ritvik Basant of the University of Chicago published their paper on the discovery, “Four Sub-Earth Planets Orbiting Barnard’s Star from MAROON-X and ESPRESSO,” in the science journal, “The Astrophysical Journal Letters,” in March 2025. The planets were entered into the NASA Exoplanet Archive on March 13, 2025.
      Share








      Details
      Last Updated Apr 01, 2025 Related Terms
      Exoplanets Radial Velocity Terrestrial Exoplanets Keep Exploring Discover More Topics From NASA
      Universe



      Exoplanets



      Search for Life



      Exoplanet Catalog


      This exoplanet encyclopedia — continuously updated, with more than 5,600 entries — combines interactive 3D models and detailed data on…

      View the full article
    • By Amazing Space
      UK Partial Solar eclipse LIVE
    • By NASA
      Explore This Section Perseverance Home Mission Overview Rover Components Mars Rock Samples Where is Perseverance? Ingenuity Mars Helicopter Mission Updates Science Overview Objectives Instruments Highlights Exploration Goals News and Features Multimedia Perseverance Raw Images Images Videos Audio More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions Mars Home 3 min read
      Visiting Mars on the Way to the Outer Solar System
      Written by Roger Wiens, Principal Investigator, SuperCam instrument / Co-Investigator, SHERLOC instrument at Purdue University
      A portion of the “Sally’s Cove” outcrop where the Perseverance rover has been exploring. The radiating lines in the rock on the left of the image may indicate that it is a shatter cone, showing the effects of the shock wave from a nearby large impact. The image was taken by Mastcam-Z’s left camera on March 21, 2025 (Sol 1452, or Martian day 1,452 of the Mars 2020 mission) at the local mean solar time of 12:13:44. Mastcam-Z is a pair of cameras located high on the rover’s mast. This image was voted by the public as “Image of the week.” NASA/JPL-Caltech/ASU Recently Mars has had a few Earthly visitors. On March 1, NASA’s Europa Clipper flew within 550 miles (884 kilometers) of the Red Planet’s surface on its way out to Jupiter. On March 12, the European Space Agency’s Hera spacecraft flew within about 3,100 miles (5,000 kilometers) of Mars, and only 300 kilometers from its moon, Deimos. Hera is on its way to study the binary asteroid Didymos and its moon Dimorphos. Next year, in May 2026, NASA’s Psyche mission is scheduled to buzz the Red Planet on its way to the metal-rich asteroid 16 Psyche, coming within a few thousand kilometers.
      Why all these visits to Mars? You might at first think that they’re using Mars as an object of opportunity for their cameras, and you would be partially right. But Mars has more to give these missions than that. The main reason for these flybys is the extra speed that Mars’ velocity around the Sun can give them. The idea that visiting a planet can speed up a spacecraft is not all that obvious, because the same gravity that attracts the spacecraft on its way towards the planet will exert a backwards force as the spacecraft leaves the planet.
      The key is in the direction that it approaches and leaves the planet. If the spacecraft leaves Mars heading in the direction that Mars is traveling around the Sun, it will gain speed in that direction, slingshotting it farther into the outer solar system. A spacecraft can typically gain several percent of its speed by performing such a slingshot flyby. The closer it gets to the planet, the bigger the effect. However, no mission wants to be slowed by the upper atmosphere, so several hundred kilometers is the closest that a mission should go. And the proximity to the planet is also affected by the exact direction the spacecraft needs to go when it leaves Mars.
      Clipper’s Mars flyby was a slight exception, slowing down the craft — by about 1.2 miles per second (2 kilometers per second) — to steer it toward Earth for a second gravity assist in December 2026. That will push the spacecraft the rest of the way to Jupiter, for its 2030 arrival.
      While observing Mars is not the main reason for their visits, many of the visiting spacecraft take the opportunity to use their cameras either to perform calibrations or to study the Red Planet and its moons.
      During Clipper’s flyby over sols 1431-1432, Mastcam-Z was directed to watch the skies for signs of the interplanetary visitor. Clipper’s relatively large solar panels could have reflected enough sunlight for it to be seen in the Mars night sky, much as we can see satellites overhead from Earth. Unfortunately, the spacecraft entered the shadow of Mars just before it came into potential view above the horizon from Perseverance’s vantage point, so the sighting did not happen. But it was worth a try.
      Meanwhile, back on the ground, Perseverance is performing something of a cliff-hanger. “Sally’s Cove” is a relatively steep rock outcrop in the outer portion of Jezero crater’s rim just north of “Broom Hill.” Perseverance made an approach during March 19-23, and has been exploring some dark-colored rocks along this outcrop, leaving the spherules behind for the moment. Who knows what Perseverance will find next?
      Share








      Details
      Last Updated Mar 28, 2025 Related Terms
      Blogs Explore More
      2 min read Sols 4493-4494: Just Looking Around


      Article


      4 hours ago
      2 min read Sols 4491-4492: Classic Field Geology Pose


      Article


      2 days ago
      3 min read Sols 4488-4490: Progress Through the Ankle-Breaking Terrain (West of Texoli Butte, Climbing Southward)


      Article


      4 days ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
    • By European Space Agency
      Video: 00:05:23 For over a decade, ESA’s Gaia mission has mapped our galaxy with stunning precision—rewriting the story of the Milky Way. As its mission enters a new phase, we look back at its most groundbreaking discoveries.
      View the full article
    • By European Space Agency
      The European Space Agency (ESA) has powered down its Gaia spacecraft after more than a decade spent gathering data that are now being used to unravel the secrets of our home galaxy.
      On 27 March 2025, Gaia’s control team at ESA’s European Space Operations Centre carefully switched off the spacecraft’s subsystems and sent it into a ‘retirement orbit’ around the Sun.
      Though the spacecraft’s operations are now over, the scientific exploitation of Gaia’s data has just begun.
      View the full article
  • Check out these Videos

×
×
  • Create New...