Jump to content

Multiple Spacecraft Tell the Story of One Giant Solar Storm


Recommended Posts

  • Publishers
Posted

5 min read

Multiple Spacecraft Tell the Story of One Giant Solar Storm

April 17, 2021, was a day like any other day on the Sun, until a brilliant flash erupted and an enormous cloud of solar material billowed away from our star. Such outbursts from the Sun are not unusual, but this one was unusually widespread, hurling high-speed protons and electrons at velocities nearing the speed of light and striking several spacecraft across the inner solar system.

In fact, it was the first time such high-speed protons and electrons – called solar energetic particles (SEPs) – were observed by spacecraft at five different, well-separated locations between the Sun and Earth as well as by spacecraft orbiting Mars. And now these diverse perspectives on the solar storm are revealing that different types of potentially dangerous SEPs can be blasted into space by different solar phenomena and in different directions, causing them to become widespread.

An animation shows a white cloud of material billowing away from the Sun (which is covered by a black disk at the center) toward the left side of the image, set against a red background with a couple dozen stars. The top says
On April 17, 2021, one of the Solar Terrestrial Relations Observatory (STEREO) spacecraft captured this view of a coronal mass ejection billowing away from the Sun (which is covered by the black disk at center to better see features around it). Learn more.
NASA/STEREO-A/COR2

“SEPs can harm our technology, such as satellites, and disrupt GPS,” said Nina Dresing of the Department of Physics and Astronomy, University of Turku in Finland. “Also, humans in space or even on airplanes on polar routes can suffer harmful radiation during strong SEP events.”

Scientists like Dresing are eager to find out where these particles come from exactly – and what propels them to such high speeds – to better learn how to protect people and technology in harm’s way. Dresing led a team of scientists that analyzed what kinds of particles struck each spacecraft and when. The team published its results in the journal Astronomy & Astrophysics.

Currently on its way to Mercury, the BepiColombo spacecraft, a joint mission of ESA (the European Space Agency) and JAXA (Japan Aerospace Exploration Agency), was closest to the blast’s direct firing line and was pounded with the most intense particles. At the same time, NASA’s Parker Solar Probe and ESA’s Solar Orbiter were on opposite sides of the flare, but Parker Solar Probe was closer to the Sun, so it took a harder hit than Solar Orbiter did. Next in line was one of NASA’s two Solar Terrestrial Relations Observatory (STEREO) spacecraft, STEREO-A, followed by the NASA/ESA Solar and Heliospheric Observatory (SOHO) and NASA’s Wind spacecraft, which were closer to Earth and well away from the blast. Orbiting Mars, NASA’s MAVEN and ESA’s Mars Express spacecraft were the last to sense particles from the event.

A diagram shows a circle representing the solar system with the Sun (not shown) in the center of the circle and gray lines radiating from the center to the edge of the circle. Degree labels, from 0 degrees to 315 degrees, appear at the end of the lines just outside the circle. The circle is shaded in blue from roughly 95 degrees to 315 degrees. In various places throughout the shaded area are dots representing STEREO A, BepiColombo, Parker Solar Probe, Solar Orbiter, Earth, and Mars. A short black arrow extends from the center of the circle toward the upper left, between BepiColombo and Solar Orbiter. At the top the text
This diagram shows the positions of individual spacecraft, as well as Earth and Mars, during the solar outburst on April 17, 2021. The Sun is at the center. The black arrow shows the direction of the initial solar flare. Several spacecraft detected solar energetic particles (SEPs) over 210 degrees around the Sun (blue shaded area).
Solar-MACH

Altogether, the particles were detected over 210 longitudinal degrees of space (almost two-thirds of the way around the Sun) – which is a much wider angle than typically covered by solar outbursts. Plus, each spacecraft recorded a different flood of electrons and protons at its location. The differences in the arrival and characteristics of the particles recorded by the various spacecraft helped the scientists piece together when and under what conditions the SEPs were ejected into space.

These clues suggested to Dresing’s team that the SEPs were not blasted out by a single source all at once but propelled in different directions and at different times potentially by different types of solar eruptions.

“Multiple sources are likely contributing to this event, explaining its wide distribution,” said team member Georgia de Nolfo, a heliophysics research scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “Also, it appears that, for this event, protons and electrons may come from different sources.”

The team concluded that the electrons were likely driven into space quickly by the initial flash of light – a solar flare – while the protons were pushed along more slowly, likely by a shock wave from the cloud of solar material, or coronal mass ejection.

“This is not the first time that people have conjectured that electrons and protons have had different sources for their acceleration,” de Nolfo said. “This measurement was unique in that the multiple perspectives enabled scientists to separate the different processes better, to confirm that electrons and protons may originate from different processes.”

In addition to the flare and coronal mass ejection, spacecraft recorded four groups of radio bursts from the Sun during the event, which could have been accompanied by four different particle blasts in different directions. This observation could help explain how the particles became so widespread.

“We had different distinct particle injection episodes – which went into significantly different directions – all contributing together to the widespread nature of the event,” Dressing said.

“This event was able to show how important multiple perspectives are in untangling the complexity of the event,” de Nolfo said.

These results show the promise of future NASA heliophysics missions that will use multiple spacecraft to study widespread phenomena, such as the Geospace Dynamics Constellation (GDC), SunRISE, PUNCH, and HelioSwarm. While single spacecraft can reveal conditions locally, multiple spacecraft orbiting in different locations provide deeper scientific insight and offer a more complete picture of what’s happening in space and around our home planet.

It also previews the work that will be done by future missions such as MUSE, IMAP, and ESCAPADE, which will study explosive solar events and the acceleration of particles into the solar system.

by Vanessa Thomas
NASA’s Goddard Space Flight Center, Greenbelt, Md.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      The Artemis I SLS (Space Launch System) rocket and Orion spacecraft is pictured in the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida before rollout to launch pad 39B, in March 2022.Credit: NASA/Frank Michaux Media are invited to see NASA’s fully assembled Artemis II SLS (Space Launch System) rocket and Orion spacecraft in mid-October before its crewed test flight around the Moon next year.  
      The event at NASA’s Kennedy Space Center in Florida will showcase hardware for the Artemis II lunar mission, which will test capabilities needed for deep space exploration. NASA and industry subject matter experts will be available for interviews.
      Attendance is open to U.S. citizens and international media. Media accreditation deadlines are as follows:
      International media without U.S. citizenship must apply by 11:59 p.m. EDT on Monday, Sept. 22. U.S. media and U.S. citizens representing international media organizations must apply by 11:59 p.m. EDT on Monday, Sept. 29. Media wishing to take part in person must apply for credentials at:
      https://media.ksc.nasa.gov
      Credentialed media will receive a confirmation email upon approval, along with additional information about the specific date for the mid-October activities when they are determined. NASA’s media accreditation policy is available online. For questions about accreditation, please email: ksc-media-accreditat@mail.nasa.gov. For other questions, please contact the NASA Kennedy newsroom at: 321-867-2468.
      Prior to the media event, the Orion spacecraft will transition from the Launch Abort System Facility to the Vehicle Assembly Building at NASA Kennedy, where it will be placed on top of the SLS rocket. The fully stacked rocket will then undergo complete integrated testing and final hardware closeouts ahead of rolling the rocket to Launch Pad 39B for launch. During this effort, technicians will conduct end-to-end communications checkouts, and the crew will practice day of launch procedures during their countdown demonstration test.
      Artemis II will send NASA astronauts Reid Wiseman, Victor Glover, Christina Koch, and CSA (Canadian Space Agency) astronaut Jeremy Hansen on an approximately 10-day journey around the Moon and back. As part of a Golden Age of innovation and exploration, Artemis will pave the way for new U.S.-crewed missions on the lunar surface ahead in preparation toward the first crewed mission to Mars.

      To learn more about the Artemis II mission, visit:
      https://www.nasa.gov/mission/artemis-ii
      -end-
      Rachel Kraft / Lauren Low
      Headquarters, Washington
      202-358-1100
      rachel.h.kraft@nasa.gov / lauren.e.low@nasa.gov  
      Tiffany Fairley
      Kennedy Space Center, Fla.
      321-867-2468
      tiffany.l.fairley@nasa.gov
      Share
      Details
      Last Updated Sep 10, 2025 LocationNASA Headquarters Related Terms
      Artemis 2 Artemis Orion Multi-Purpose Crew Vehicle Space Launch System (SLS) View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      While auroras are a beautiful sight on Earth, the solar activity that causes them can wreak havoc with space-based infrastructure like satellites. Using artificial intelligence to predict these disruptive solar events was a focus of KX’s work with FDL.Credit: Sebastian Saarloos In the summer of 2024, people across North America were amazed when auroras lit up the night sky across their hometowns, but the same solar activity that makes auroras can cause disruptions to satellites that are essential to systems on Earth. The solution to predicting these solar events and warning satellite operators may come through artificial intelligence. 

      The Frontier Development Lab of Mountain View, California, is an ongoing partnership between NASA and commercial AI firms to apply advanced machine learning to problems that matter to the agency and beyond. Since 2016, the Frontier Development Lab has applied AI on behalf of NASA in planetary defense, Heliophysics, Earth science, medicine, and lunar exploration.

      Through a collaboration with a company called KX Systems, the Frontier Development Lab looked to use proven software in an innovative new way. The company’s flagship data analytics software, called kdb+, is typically used in the financial industry to keep track of rapid shifts in market trends, but the company was exploring how it could be used in space. 

      Between 2017 and 2019, KX Systems participated in the Frontier Development Lab partnership through NASA’s Ames Research Center in Silicon Valley, California. Working with NASA scientists, KX applied the capabilities of kdb+ to searching for exoplanets and predicting space weather, areas which could be improved with AI models. One question the Frontier Development Lab worked to answer was whether kdb+ could forecast the kind of space weather that creates the auroras to predict when GPS satellites might experience signal interruption due to the Sun.

      By importing several datasets monitoring the ionosphere, solar activity, and Earth’s magnetic field, then applying machine learning algorithms to them, the Frontier Development Lab researchers were able to predict disruptive events up to 24 hours in advance. 

      While this was a scientific application of AI, KX Systems says some of this development work has made it back into its commercial offerings, as there are similarities between AI models developed to find patterns in satellite signal losses and ones that predict maintenance needs for industrial manufacturing equipment.

      A division of FD Technologies plc., KX Systems is a technology company that offers database management and analytics software for customers that need to make decisions quickly. While KX started in 1993, its AI-driven business has grown considerably, and the company credits work done with NASA for accelerating some of its capabilities.

      From protecting valuable satellites to keeping manufacturing lines moving at top performance, pairing NASA’s expertise with commercial ingenuity is a combination for success.  
      Read More Share
      Details
      Last Updated Sep 09, 2025 Related Terms
      Technology Transfer & Spinoffs Spinoffs Technology Transfer Explore More
      3 min read NASA-Developed Printable Metal Can Take the Heat
      Article 4 weeks ago 5 min read NASA Releases Opportunity to Boost Commercial Space Tech Development
      Article 1 month ago 3 min read NASA-Derived Textiles are Touring France by Bike
      Article 2 months ago Keep Exploring Discover Related Topics
      Missions
      Technology Transfer and Spinoffs News
      Auroras
      Auroras, often called the northern lights (aurora borealis) or southern lights (aurora australis), are colorful, dynamic, and often visually delicate…
      Solar System
      View the full article
    • By European Space Agency
      The European Space Agency-led Solar Orbiter mission has split the flood of energetic particles flung out into space from the Sun into two groups, tracing each back to a different kind of outburst from our star.
      View the full article
    • By NASA
      Credit: NASA’s Goddard Space Flight Center; Music Credit: “History in Motion” by Fred Dubois [SACEM], Koka Media [SACEM], Universal Publishing Production Music France [SACEM], and Universal Production Music. On Aug. 7 and 8, NASA’s Nancy Grace Roman Space Telescope team assessed the observatory’s solar panels and a visor-like sunshade called the deployable aperture cover — two components that will be stowed for launch and unfold in space. Engineers confirmed their successful operation during a closely monitored sequence in simulated space-like conditions. On the first day, Roman’s four outer solar panels were deployed one at a time, each unfolding over 30 seconds with 30-second pauses between them. The visor followed in a separate test the next day. These assessments help ensure Roman will perform as expected in space. Roman is slated to launch no later than May 2027, with the team working toward a potential early launch as soon as fall 2026.
      Click here to learn more about Roman Share
      Details
      Last Updated Aug 26, 2025 EditorAshley BalzerContactAshley Balzerashley.m.balzer@nasa.gov Related Terms
      Goddard Space Flight Center Nancy Grace Roman Space Telescope View the full article
    • By Amazing Space
      LIVE Solar Tracking Sunspots - Seestar s50
  • Check out these Videos

×
×
  • Create New...