Jump to content

Student Teams to Help Fill the Inflatable Void with Latest Student Challenge  


NASA

Recommended Posts

  • Publishers
3 Min Read

Student Teams to Help Fill the Inflatable Void with Latest Student Challenge  

Student Teams to Help Fill the Inflatable Void with Latest Student Challenge

This year will be a “BIG” year for several college and university teams as they research, design, and demonstrate novel inflatable systems configured for future lunar operations through a NASA-sponsored engineering competition.

NASA’s Breakthrough, Innovative and Game-Changing (BIG) Idea Challenge asked student innovators to propose novel inflatable component and system concepts that could benefit future Artemis missions to the Moon and beyond.

The Inflatable Systems for Lunar Operations theme allowed teams to submit various technology concepts such as soft robotics, deployable infrastructure components, emergency shelters or other devices for extended extravehicular activities, pressurized tunnels and airlocks, and debris shields and dust protection systems. Inflatable systems could greatly reduce the mass and stowed volume of science and exploration payloads, critical for lowering costs to deep-space destinations.

Award values vary between ~$100,000 and $150,000 and are based on each team’s prototype and budget.

The 2024 BIG Idea Challenge awardees are:


Arizona State UniversityTempe, ArizonaAegis – Inflatable Lunar Landing Pad SystemAdvisors: Tyler Smith, Dr. James Bell, James Rice, Josh Chang
Brigham Young University Provo, UtahUntethered and Modular Inflatable Robots for Lunar OperationsAdvisors: Dr. Nathan Usevitch, Dr. Marc Killpack
California Institute of Technology, with NASA Jet Propulsion Laboratory, Cislune and VJ TechnologiesPasadena, CaliforniaPILLARS: Plume-deployed Inflatable for Launch and Landing Abrasive Regolith ShieldingAdvisors: Dr. Soon-Jo Chung, Kalind Carpenter
Northwestern University, with National Aerospace CorporationEvanston, Illinois METALS: Metallic Expandable Technology for Artemis Lunar StructuresAdvisors: Dr. Ian McCue, Dr. Ryan Truby
University of Maryland College Park, MarylandAuxiliary Inflatable Wheels for Lunar RoverAdvisor: Dr. David Akin
University of MichiganAnn Arbor, MichiganCargo-BEEP (Cargo Balancing Expandable Exploration Platform)Advisor: Dr. John Shaw

Once funded, finalist teams continue designing, building, and testing their concepts, which could lead to NASA innovations that augment technology currently in development. Work performed by the teams culminates in a final technical paper, prototype demonstration, and potential opportunity to present in front of a diverse panel of NASA and industry experts. 

As a program affiliated with NASA’s Lunar Surface Innovation Initiative (LSII), the BIG Idea Challenge incubates new ideas from the future workforce. Through the challenge, student teams aid LSII’s mission to advance transformative capabilities for lunar surface exploration across NASA’s Space Technology portfolio. 

We truly love engaging with the academic community and incorporating the students’ novel ideas into our approaches to technology development. We need cutting-edge and groundbreaking technologies for successful space exploration missions, so it’s important that we continue to push the envelope and ignite innovation. I can’t think of a better way to do that than collaborating with bright, creative minds who will comprise our future workforce.

Niki Werkheiser

Niki Werkheiser

Director of Technology Maturation at NASA

Since its inception in 2016, the challenge has invited students to think critically and creatively about several defined aerospace topics, including extreme terrain robotics, lunar metal production, Mars greenhouse development, and more. Each year, the theme is tied directly to a current aerospace challenge NASA is working on. 

Through the BIG Idea Challenge, we enhance the university experience by providing students and faculty with more opportunities to engage in meaningful NASA projects. This not only enables a multitude of networking opportunities for the students but also gives them a real sense of accomplishment and lets them know that their ideas are important.

Through the BIG Idea Challenge, we enhance the university experience by providing students and faculty with more opportunities to engage in meaningful NASA projects. This not only enables a multitude of networking opportunities for the students but also gives them a real sense of accomplishment and lets them know that their ideas are important.

Tomas Gonzalez-Torres

Tomas Gonzalez-Torres

NASA’s Space Grant project manager

The BIG Idea Challenge is one of several Artemis student challenges sponsored through NASA’s Space Technology Mission Directorate’s Game Changing Development (GCD) program and the agency’s Office of STEM Engagement Space Grant Project. It is managed by a partnership between the National Institute of Aerospace and The Johns Hopkins Applied Physics Laboratory.

BIG Idea supports GCD’s efforts to rapidly mature innovative and high-impact capabilities and technologies for possible infusion in future NASA missions, while creating a rewarding student and faculty experience.  The 16-month intensive project-based program supports innovations initiated and furthered by the student teams that can possibly be adopted by NASA, and it works to endeavor ambitious new missions beyond Earth.

Learn more about this year’s BIG Idea Challenge 

Visal concept of lunar infrastructure and inlfatable systems including a gantry, solar array, high mobility vehicle, manufacturing press, dust shield, and garage.
AMA Advanced Concepts Lab

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By European Space Agency
      The latest edition of ESA Impact is here
      Your interactive gateway to the most captivating stories and stunning visuals from ESA
      View the full article
    • By Amazing Space
      HURRICANE HELENE - Latest Images From Space
    • By NASA
      Team H.E.L.P.S. (High Efficiency Long-Range Power Solution) from The University of California, Santa Barbara won the $1 million grand prize in NASA’s Watts on the Moon Challenge. Their team developed a low-mass, high efficiency cable and featured energy storage batteries on both ends of their power transmission and energy storage system. Credit: NASA/GRC/Sara Lowthian-Hanna NASA has awarded a total of $1.5 million to two U.S. teams for their novel technology solutions addressing energy distribution, management, and storage as part of the agency’s Watts on the Moon Challenge. The innovations from this challenge aim to support NASA’s Artemis missions, which will establish long-term human presence on the Moon.
      This two-phase competition has challenged U.S. innovators to develop breakthrough power transmission and energy storage technologies that could enable long-duration Moon missions to advance the nation’s lunar exploration goals. The final phase of the challenge concluded with a technology showcase and winners’ announcement ceremony Friday at Great Lakes Science Center, home of the visitor center for NASA’s Glenn Research Center in Cleveland.
      “Congratulations to the finalist teams for developing impactful power solutions in support of NASA’s goal to sustain human presence on the Moon,” said Kim Krome-Sieja, acting program manager for NASA Centennial Challenges at NASA’s Marshall Space Flight Center in Huntsville, Alabama. “These technologies seek to improve our ability to explore and make discoveries in space and could have implications for improving power systems on Earth.”
      The winning teams are:
      First prize ($1 million): H.E.L.P.S.  (High Efficiency Long-Range Power Solution) of Santa Barbara, California Second prize ($500,000): Orbital Mining Corporation of Golden, Colorado Four teams were invited to refine their hardware and deliver full system prototypes in the final stage of the competition, and three finalist teams completed their technology solutions for demonstration and assessment at NASA Glenn. The technologies were the first power transmission and energy storage prototypes to be tested by NASA in a vacuum chamber mimicking the freezing temperature and absence of pressure found at the permanently shadowed regions of the Lunar South Pole. The simulation required the teams’ power systems to demonstrate operability over six hours of solar daylight and 18 hours of darkness with the user three kilometers (nearly two miles) away from the power source.
      During this competition stage, judges scored the finalists’ solutions based on a Total Effective System Mass (TESM) calculation, which measures the effectiveness of the system relative to its size and weight – or mass – and the total energy provided by the power source. The highest-performing solution was identified based on having the lowest TESM value – imitating the challenges that space missions face when attempting to reduce mass while meeting the mission’s electrical power needs.
      Team H.E.L.P.S. (High Efficiency Long-Range Power Solution) from University of California, Santa Barbara, won the grand prize for their hardware solution, which had the lowest mass and highest efficiency of all competitors. The technology also featured a special cable operating at 800 volts and an innovative use of energy storage batteries on both ends of the transmission system. They also employed a variable radiation shield to switch between conserving heat during cold periods and disposing of excess heat during high power modes. The final 48-hour test proved their system design effectively met the power transmission, energy storage, and thermal challenges in the final phase of competition.
      Orbital Mining Corporation, a space technology startup, received the second prize for its hardware solution that also successfully completed the 48-hour testwith high performance. They employed a high-voltage converter system coupled with a low-mass cable and a lithium-ion battery.
      “The energy solutions developed by the challenge teams are poised to address NASA’s space technology priorities,” said Amy Kaminski, program executive for Prizes, Challenges, and Crowdsourcing in NASA’s Space Technology Mission Directorate at NASA Headquarters in Washington. “These solutions support NASA’s recently ranked civil space shortfalls, including in the top category of surviving and operating through the lunar night.”
      During the technology showcase and winners’ announcement ceremony, NASA experts, media, and members of the public gathered to see the finalist teams’ technologies and hear perspectives from the teams’ participation in the challenge. After the winners were announced, event attendees were also welcome to meet NASA astronaut Stephen Bowen.
      The Watts on the Moon Challenge is a NASA Centennial Challenge led by NASA Glenn. NASA Marshall Space Flight Center manages Centennial Challenges, which are part of the agency’s Prizes, Challenges, and Crowdsourcing program in the Space Technology Mission Directorate. NASA contracted HeroX to support the administration of this challenge.
      For more information on NASA’s Watts on the Moon Challenge, visit:
      https://www.nasa.gov/wattson
      -end-

      Jasmine Hopkins
      Headquarters, Washington
      321-432-4624
      jasmine.s.hopkins@nasa.gov
      Lane Figueroa 
      Marshall Space Flight Center, Huntsville, Ala. 
      256-544-0034
      lane.e.figueroa@nasa.gov 
      Brian Newbacher
      Glenn Research Center, Cleveland
      216-469-9726
      Brian.t.newbacher@nasa.gov
      Share
      Details
      Last Updated Sep 20, 2024 LocationGlenn Research Center Related Terms
      Science Mission Directorate View the full article
    • By NASA
      The Sun rises above the Flight Research Building at NASA’s Glenn Research Center in Cleveland.Credit: NASA NASA‘s Watts on the Moon Challenge, designed to advance the nation’s lunar exploration goals under the Artemis campaign by challenging United States innovators to develop breakthrough power transmission and energy storage technologies that could enable long-duration Moon missions, concludes on Friday, Sept. 20, at the Great Lakes Science Center in Cleveland.
      “For astronauts to maintain a sustained presence on the Moon during Artemis missions, they will need continuous, reliable power,” said Kim Krome-Sieja, acting program manager, Centennial Challenges at NASA’s Marshall Space Flight Center in Huntsville, Alabama. “NASA has done extensive work on power generation technologies. Now, we’re looking to advance these technologies for long-distance power transmission and energy storage solutions that can withstand the extreme cold of the lunar environment.”
      The technologies developed through the Watts on the Moon Challenge were the first power transmission and energy storage prototypes to be tested by NASA in an environment that simulates the extreme cold and weak atmospheric pressure of the lunar surface, representing a first step to readying the technologies for future deployment on the Moon. Successful technologies from this challenge aim to inspire, for example, new approaches for helping batteries withstand cold temperatures and improving grid resiliency in remote locations on Earth that face harsh weather conditions.
      Media and the public are invited to attend the grand finale technology showcase and awards ceremony for the $5 million, two-phase competition. U.S. and international media interested in covering the event should confirm their attendance with Lane Figueroa by 3 p.m. CDT Tuesday, Sept. 17, at: lane.e.figueroa@nasa.gov. NASA’s media accreditation policy is available online. Members of the public may register as an attendee by completing this form, also by Friday, Sept. 17.
      During the final round of competition, finalist teams refined their hardware and delivered a full system prototype for testing in simulated lunar conditions at NASA’s Glenn Research Center in Cleveland. The test simulated a challenging power system scenario where there are six hours of solar daylight, 18 hours of darkness, and the user is three kilometers from the power source.
      “Watts on the Moon was a fantastic competition to judge because of its unique mission scenario,” said Amy Kaminski, program executive, Prizes, Challenges, and Crowdsourcing, Space Technology Mission Directorate at NASA Headquarters in Washington. “Each team’s hardware was put to the test against difficult criteria and had to perform well within a lunar environment in our state-of-the-art thermal vacuum chambers at NASA Glenn.”
      Each finalist team was scored based on Total Effective System Mass (TESM), which determines how the system works in relation to its mass. At the awards ceremony, NASA will award $1 million to the top team who achieves the lowest TESM score, meaning that during testing, that team’s system produced the most efficient output-to-mass ratio. The team with the second lowest mass will receive $500,000. The awards ceremony stream live on NASA Glenn’s YouTube channel and NASA Prize’s Facebook page.
      The Watts on the Moon Challenge is a NASA Centennial Challenge led by NASA Glenn. NASA Marshall manages Centennial Challenges, which are part of the agency’s Prizes, Challenges, and Crowdsourcing program in the Space Technology Mission Directorate. NASA has contracted HeroX to support the administration of this challenge.
      For more information on NASA’s Watts on the Moon Challenge, visit:
      https://www.nasa.gov/wattson
      -end- 
      Jasmine Hopkins
      Headquarters, Washington
      321-432-4624
      jasmine.s.hopkins@nasa.gov
      Lane Figueroa
      Marshall Space Flight Center, Huntsville, Ala.
      256-932-1940
      lane.e.figueroa@nasa.gov
      Brian Newbacher
      Glenn Research Center, Cleveland
      216-460-9726
      brian.t.newbacher@nasa.gov
      Share
      Details
      Last Updated Sep 13, 2024 EditorJessica TaveauLocationNASA Headquarters Related Terms
      Prizes, Challenges, and Crowdsourcing Program Artemis Centennial Challenges Glenn Research Center Marshall Space Flight Center Space Technology Mission Directorate View the full article
    • By NASA
      NASA wants you to visualize the future of space exploration! This art challenge is looking for creative, artistic images to represent NASA’s Moon to Mars Architecture, the agency’s roadmap for crewed exploration of deep space. With NASA’s Moon to Mars Objectives in hand, the agency is developing an architecture for crewed exploration of the Moon, Mars, and beyond. Using systems engineering processes, NASA has begun to perform the analyses and studies needed to make informed decisions about a sustained lunar evolution and initial human missions to Mars. NASA’s Moon to Mars Architecture currently includes four segments of increasing complexity: Human Lunar Return, Foundational Exploration, Sustained Lunar Evolution, and Humans to Mars. For this competition, NASA is interested in your artistic interpretation of the latter two segments: Sustained Lunar Evolution and Humans to Mars. These depictions could include operations in space, on the surface, or both. Artists may develop and submit a still image for either the lunar and Mars exploration segments.
      Award: $10,000 in total prizes
      Open Date: September 12, 2024
      Close Date: October 31, 2024
      For more information, visit: https://nasa.yet2.com/
      View the full article
  • Check out these Videos

×
×
  • Create New...