Members Can Post Anonymously On This Site
NASA, Intuitive Machines Moon Mission Update
-
Similar Topics
-
By NASA
Credit: NASA Two proposals for missions to observe X-ray and far-infrared wavelengths of light from space were selected by NASA for additional review, the agency announced Thursday. Each proposal team will receive $5 million to conduct a 12-month mission concept study. After detailed evaluation of those studies, NASA expects to select one concept in 2026 to proceed with construction, for a launch in 2032.
The resulting mission will become the first in a new class of NASA astrophysics missions within the agency’s longstanding Explorers Program. The new mission class, Probe Explorers, will fill a gap between flagship and smaller-scale missions in NASA’s exploration of the secrets of the universe.
“NASA’s Explorers Program brings out some of the most creative ideas for missions that help us reveal the unknown about our universe. Establishing this new line of missions – the largest our Astrophysics program has ever competed – has taken that creativity to new heights,” said Nicola Fox, associate administrator, Science Mission Directorate at NASA Headquarters in Washington. “Both of the selected concepts could enable ground-breaking science responsive to the top astrophysics priorities of the decade, develop key technologies for future flagship missions, and offer opportunities for the entire community to use the new observatory, for the benefit of all.”
The National Academies of Sciences, Engineering, and Medicine’s 2020 Decadal Survey, Pathways to Discovery in Astronomy and Astrophysics for the 2020s, recommended NASA establish this new mission class, with the first mission observing either X-ray or far-infrared wavelengths of light. Mission costs for the new Probe Explorers are capped at $1 billion each, not including the cost of the rocket, launch services, or any contributions.
NASA evaluated Probe Explorers proposals based on their scientific merit in alignment with the Decadal Survey’s recommendations, feasibility of development plans, and use of technologies that could support the development of future large missions.
The selected proposals are:
Advanced X-ray Imaging Satellite
This mission would be an X-ray imaging observatory with a large, flat field-of-view and high spatial resolution. It would study the seeds of supermassive black holes; investigate the process of stellar feedback, which influences how galaxies evolve; and help determine the power sources of a variety of explosive phenomena in the cosmos. The observatory would build on the successes of previous X-ray observatories, capturing new capabilities for X-ray imaging and imaging spectroscopy. Principal investigator: Christopher Reynolds, University of Maryland, College Park Project management: NASA’s Goddard Space Flight Center in Greenbelt, Maryland Probe far-Infrared Mission for Astrophysics
This observatory would be a 5.9-foot (1.8-meter) telescope studying far-infrared wavelengths, helping bridge the gap between existing infrared observatories, such as NASA’s James Webb Space Telescope, and radio telescopes. By studying radiant energy that only emerges in the far-infrared, the mission would address questions about the origins and growth of planets, supermassive black holes, stars, and cosmic dust. Principal investigator: Jason Glenn, NASA Goddard Project management: NASA’s Jet Propulsion Laboratory in Southern California The Explorers Program is the oldest continuous NASA program designed to provide frequent, low-cost access to space using principal investigator-led space science investigations relevant to the Science Mission Directorate’s astrophysics and heliophysics programs. Since the Explorer 1 launch in 1958, which discovered Earth’s radiation belts, the Explorers Program has launched more than 90 missions, including the Uhuru and Cosmic Background Explorer missions that led to Nobel prizes for their investigators.
The Explorers Program is managed by NASA Goddard for the Science Mission Directorate, which conducts a wide variety of research and scientific exploration programs for Earth studies, space weather, the solar system and universe.
For more information about the Explorers Program, visit:
https://explorers.gsfc.nasa.gov
-end-
Alise Fisher
Headquarters, Washington
202-617-4977
alise.m.fisher@nasa.gov
Share
Details
Last Updated Oct 03, 2024 EditorJessica TaveauLocationNASA Headquarters Related Terms
Science Mission Directorate Astrophysics Division Astrophysics Explorers Program View the full article
-
By NASA
An artist’s concept of NASA’s Europa Clipper spacecraft. Credits: NASA/JPL-Caltech Lee esta nota de prensa en español aquí.
NASA will provide live coverage of prelaunch and launch activities for Europa Clipper, the agency’s mission to explore Jupiter’s icy moon Europa. NASA is targeting launch at 12:31 p.m. EDT Thursday, Oct. 10, on a SpaceX Falcon Heavy rocket from Launch Complex 39A at NASA’s Kennedy Space Center in Florida.
Beyond Earth, Jupiter’s moon Europa is considered one of the solar system’s most promising potentially habitable environments. After an approximately 1.8-billion-mile journey, Europa Clipper will enter orbit around Jupiter in April 2030, where the spacecraft will conduct a detailed survey of Europa to determine whether the icy world could have conditions suitable for life. Europa Clipper is the largest spacecraft NASA has ever developed for a planetary mission. It carries a suite of nine instruments along with a gravity experiment that will investigate an ocean beneath Europa’s surface, which scientists believe contains twice as much liquid water as Earth’s oceans.
For a schedule of live events and the platforms they’ll stream on, visit:
https://go.nasa.gov/europaclipperlive
The deadline for media accreditation for in-person coverage of this launch has passed. NASA’s media credentialing policy is available online. For questions about media accreditation, please email: ksc-media-accreditat@mail.nasa.gov.
NASA’s mission coverage is as follows (all times Eastern and subject to change based on real-time operations):
Tuesday, Oct. 8
1 p.m. – In-person, one-on-one interviews, open to media credentialed for this launch.
3:30 p.m. – NASA’s Europa Clipper science briefing with the following participants:
Gina DiBraccio, acting director, Planetary Science Division, NASA Headquarters Robert Pappalardo, project scientist, Europa Clipper, NASA JPL Haje Korth, deputy project scientist, Europa Clipper, Applied Physics Laboratory (APL) Cynthia Phillips, project staff scientist, Europa Clipper, NASA JPL Coverage of the science news conference will stream live on NASA+ and the agency’s website, Learn how to stream NASA content through a variety of platforms, including social media.
Media may ask questions in person and via phone. Limited auditorium space will be available for in-person participation. For the dial-in number and passcode, media should contact the NASA Kennedy newsroom no later than one hour before the start of the event at: ksc-newsroom@mail.nasa.gov.
Wednesday, Oct. 9
2 p.m. – NASA Social panel at NASA Kennedy with the following participants:
Kate Calvin, chief scientist and senior climate advisor, NASA Headquarters Caley Burke, Flight Design Analyst, NASA’s Launch Services Program Erin Leonard, project staff scientist, Europa Clipper, NASA JPL Juan Pablo León, systems testbed engineer, Europa Clipper, NASA JPL Elizabeth Turtle, principal investigator, Europa Imaging System instrument, Europa Clipper, APL The panel will stream live on NASA Kennedy’s YouTube, X, and Facebook accounts. Members of the public may ask questions online by posting to the YouTube, X, and Facebook live streams or using #AskNASA.
3:30 p.m. – NASA’s Europa Clipper prelaunch news conference (following completion of the Launch Readiness Review), with the following participants:
NASA Associate Administrator Jim Free Sandra Connelly, deputy associate administrator, Science Mission Directorate, NASA Headquarters Tim Dunn, launch director, NASA’s Launch Services Program Julianna Scheiman, director, NASA Science Missions, SpaceX Jordan Evans, project manager, Europa Clipper, NASA JPL Mike McAleenan, launch weather officer, 45th Weather Squadron, U.S. Space Force Coverage of the prelaunch news conference will stream live on NASA+, the agency’s website, the NASA app, and YouTube.
Media may ask questions in person and via phone. Limited auditorium space will be available for in-person participation. For the dial-in number and passcode, media should contact the NASA Kennedy newsroom no later than one hour before the start of the event at ksc-newsroom@mail.nasa.gov.
5:30 p.m. – NASA’s Europa Clipper rollout show. Coverage will stream live on NASA+, the agency’s website, the NASA app, and YouTube.
Thursday, Oct. 10
11:30 a.m. – NASA launch coverage in English begins on NASA+ and the agency’s website.
11:30 a.m. – NASA launch coverage in Spanish begins on NASA+, the agency’s website and NASA’s Spanish YouTube channel.
12:31 p.m. – Launch
Audio Only Coverage
Audio only of the news conferences and launch coverage will be carried on the NASA “V” circuits, which may be accessed by dialing 321-867-1220, -1240 or -7135. On launch day, “mission audio,” countdown activities without NASA+ media launch commentary, is carried on 321-867-7135.
Live Video Coverage Prior to Launch
NASA will provide a live video feed of Launch Complex 39A approximately 18 hours prior to the planned liftoff of the mission on the NASA Kennedy newsroom YouTube channel. The feed will be uninterrupted until the launch broadcast begins on NASA+.
NASA Website Launch Coverage
Launch day coverage of the mission will be available on the agency’s website. Coverage will include links to live streaming and blog updates beginning no earlier than 10 a.m., Oct. 10, as the countdown milestones occur. On-demand streaming video and photos of the launch will be available shortly after liftoff.
Follow countdown coverage on the Europa Clipper blog. For questions about countdown coverage, contact the Kennedy newsroom at 321-867-2468.
Para obtener información sobre cobertura en español en el Centro Espacial Kennedy o si desea solicitar entrevistas en español, comuníquese con Antonia Jaramillo: antonia.jaramillobotero@nasa.gov o Messod Bendayan: messod.c.bendayan@nasa.gov
Attend the Launch Virtually
Members of the public can register to attend this launch virtually. NASA’s virtual guest program for this mission also includes curated launch resources, notifications about related opportunities or changes, and a stamp for the NASA virtual guest passport following launch.
Watch, Engage on Social Media
Let people know you’re following the mission on X, Facebook, and Instagram by using the hashtags #EuropaClipper and #NASASocial. You can also stay connected by following and tagging these accounts:
X: @NASA, @EuropaClipper, @NASASolarSystem, @NASAJPL, @NASAKennedy, @NASA_LSP
Facebook: NASA, NASA’s Europa Clipper, NASA’s JPL, NASA’s Launch Services Program
Instagram: @NASA, @nasasolarsystem, @NASAKennedy, @NASAJPL
For more information about the mission, visit:
https://science.nasa.gov/mission/europa-clipper
-end-
Karen Fox / Molly Wasser
Headquarters, Washington
202-358-1600
karen.c.fox@nasa.gov / molly.l.wasser.nasa.gov
Leejay Lockhart
Kennedy Space Center, Florida
321-747-8310
leejay.lockhart@nasa.gov
Share
Details
Last Updated Oct 03, 2024 LocationKennedy Space Center Related Terms
Europa Clipper Europa Jupiter Jupiter Moons Missions View the full article
-
By NASA
5 min read
NASA’s LRO: Lunar Ice Deposits are Widespread
Deposits of ice in lunar dust and rock (regolith) are more extensive than previously thought, according to a new analysis of data from NASA’s LRO (Lunar Reconnaissance Orbiter) mission. Ice would be a valuable resource for future lunar expeditions. Water could be used for radiation protection and supporting human explorers, or broken into its hydrogen and oxygen components to make rocket fuel, energy, and breathable air.
Prior studies found signs of ice in the larger permanently shadowed regions (PSRs) near the lunar South Pole, including areas within Cabeus, Haworth, Shoemaker and Faustini craters. In the new work, “We find that there is widespread evidence of water ice within PSRs outside the South Pole, towards at least 77 degrees south latitude,” said Dr. Timothy P. McClanahan of NASA’s Goddard Space Flight Center in Greenbelt, Maryland, and lead author of a paper on this research published October 2 in the Planetary Science Journal.
The study further aids lunar mission planners by providing maps and identifying the surface characteristics that show where ice is likely and less likely to be found, with evidence for why that should be. “Our model and analysis show that greatest ice concentrations are expected to occur near the PSRs’ coldest locations below 75 Kelvin (-198°C or -325°F) and near the base of the PSRs’ poleward-facing slopes,” said McClanahan.
This illustration shows the distribution of permanently shadowed regions (in blue) on the Moon poleward of 80 degrees South latitude. They are superimposed on a digital elevation map of the lunar surface (grey) from the Lunar Orbiter Laser Altimeter instrument on board NASA’s Lunar Reconnaissance Orbiter spacecraft. NASA/GSFC/Timothy P. McClanahan “We can’t accurately determine the volume of the PSRs’ ice deposits or identify if they might be buried under a dry layer of regolith. However, we expect that for each surface 1.2 square yards (square meter) residing over these deposits there should be at least about five more quarts (five more liters) of ice within the surface top 3.3 feet (meter), as compared to their surrounding areas,” said McClanahan. The study also mapped where fewer, smaller, or lower-concentration ice deposits would be expected, occurring primarily towards warmer, periodically illuminated areas.
Ice could become implanted in lunar regolith through comet and meteor impacts, released as vapor (gas) from the lunar interior, or be formed by chemical reactions between hydrogen in the solar wind and oxygen in the regolith. PSRs typically occur in topographic depressions near the lunar poles. Because of the low Sun angle, these areas haven’t seen sunlight for up to billions of years, so are perpetually in extreme cold. Ice molecules are thought to be repeatedly dislodged from the regolith by meteorites, space radiation, or sunlight and travel across the lunar surface until they land in a PSR where they are entrapped by extreme cold. The PSR’s continuously cold surfaces can preserve ice molecules near the surface for perhaps billions of years, where they may accumulate into a deposit that is rich enough to mine. Ice is thought to be quickly lost on surfaces that are exposed to direct sunlight, which precludes their accumulations.
The team used LRO’s Lunar Exploration Neutron Detector (LEND) instrument to detect signs of ice deposits by measuring moderate-energy, “epithermal” neutrons. Specifically, the team used LEND’s Collimated Sensor for Epithermal Neutrons (CSETN) that has a fixed 18.6-mile (30-kilometer) diameter field-of-view. Neutrons are created by high-energy galactic cosmic rays that come from powerful deep-space events such as exploding stars, that impact the lunar surface, break up regolith atoms, and scatter subatomic particles called neutrons. The neutrons, which can originate from up to about a 3.3-foot (meter’s) depth, ping-pong their way through the regolith, running into other atoms. Some get directed into space, where they can be detected by LEND. Since hydrogen is about the same mass as a neutron, a collision with hydrogen causes the neutron to lose relatively more energy than a collision with most common regolith elements. So, where hydrogen is present in regolith, its concentration creates a corresponding reduction in the observed number of moderate-energy neutrons.
“We hypothesized that if all PSRs have the same hydrogen concentration, then CSETN should proportionally detect their hydrogen concentrations as a function of their areas. So, more hydrogen should be observed towards the larger-area PSRs,” said McClanahan.
The model was developed from a theoretical study that demonstrated how similarly hydrogen-enhanced PSRs would be detected by CSETNs fixed-area field-of-view. The correlation was demonstrated using the neutron emissions from 502 PSRs with areas ranging from 1.5 square miles (4 km2) to 417 square miles (1079 km2) that contrasted against their surrounding less hydrogen-enhanced areas. The correlation was expectedly weak for the small PSRs but increased towards the larger-area PSRs.
The research was sponsored by the LRO project science team, NASA’s Goddard Space Flight Center’s Artificial Intelligence Working Group, and NASA grant award number 80GSFC21M0002. The study was conducted using NASA’s LRO Diviner radiometer and Lunar Orbiter Laser Altimeter instruments. The LEND instrument was developed by the Russian Space Agency, Roscosmos by its Space Research Institute (IKI). LEND was integrated to the LRO spacecraft at the NASA Goddard Space Flight Center. LRO is managed by NASA’s Goddard Space Flight Center in Greenbelt, Maryland, for the Science Mission Directorate at NASA Headquarters in Washington.
Share
Details
Last Updated Oct 03, 2024 Editor wasteigerwald Contact wasteigerwald william.a.steigerwald@nasa.gov Location Goddard Space Flight Center Related Terms
Earth’s Moon Lunar Reconnaissance Orbiter (LRO) Uncategorized Explore More
6 min read NASA’s LRO Discovers Lunar Hydrogen More Abundant on Moon’s Pole-Facing Slopes
Space travel is difficult and expensive – it would cost thousands of dollars to launch…
Article
10 years ago
4 min read NASA’s LRO Finds Lunar Pits Harbor Comfortable Temperatures
NASA-funded scientists have discovered shaded locations within pits on the Moon that always hover around…
Article
2 years ago
4 min read NASA’s LRO Spacecraft Captures Images of LADEE’s Impact Crater
NASA’S Lunar Reconnaissance Orbiter (LRO) spacecraft has spied a new crater on the lunar surface;…
Article
10 years ago
View the full article
-
By NASA
3 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
NASA astronaut Kate Rubins takes Apollo 17 Lunar Module Pilot Harrison “Jack” Schmitt on a ride on NASA’s rover prototype at Johnson Space Center in Houston.NASA/James Blair When astronauts return to the Moon as part of NASA’s Artemis campaign, they will benefit from having a human-rated unpressurized LTV (Lunar Terrain Vehicle) that will allow them to explore more of the lunar surface, enabling diverse scientific discoveries.
As crewed Artemis missions near, engineers at NASA’s Johnson Space Center in Houston are designing an unpressurized rover prototype, known as the Ground Test Unit. The test unit will employ a flexible architecture to simulate and evaluate different rover concepts for use beginning with Artemis V.
In April 2024, as part of the Lunar Terrain Vehicle Services contract, NASA selected three vendors — Intuitive Machines, Lunar Outpost, and Venturi Astrolab — to supply rover capabilities for use by astronauts on the lunar surface. While the test unit will never go to the Moon, it will support the development of additional rover prototypes that will enable NASA and the three companies to continue making progress until one of the providers comes online. Additionally, data provided from GTU testing helps inform both NASA and the commercial companies as they continue evolving their rover designs as it serves as an engineering testbed for the LTV providers to test their technologies on crew compartment design, rover maintenance, and payload science integration, to name a few.
“The Ground Test Unit will help NASA teams on the ground, test and understand all aspects of rover operations on the lunar surface ahead of Artemis missions,” said Jeff Somers, engineering lead for the Ground Test Unit. “The GTU allows NASA to be a smart buyer, so we are able to test and evaluate rover operations while we work with the LTVS contractors and their hardware.”
Suited NASA engineers sit on the rover prototype during testing at NASA’s Johnson Space Center in Houston.NASA/Bill Stafford A suited NASA engineer sits on the agency’s rover prototype during testing at NASA’s Johnson Space Center in Houston.NASA/Bill Stafford Suited NASA engineers sit on the rover prototype during testing at NASA’s Johnson Space Center in Houston.NASA/Bill Stafford The LTVS contractors have requirements that align with the existing GTU capabilities. As with the test unit, the vendor-developed, LTV should support up to two crewmembers, have the ability to be operated remotely, and can implement multiple control concepts such as drive modes, self-leveling, and supervised autonomy. Having a NASA prototype of the vehicle we will drive on the Moon, here on Earth, allows many teams to test capabilities while also getting hands-on engineering experience developing rover hardware.
NASA has built some next generation rover concept vehicles following the successes of the agency’s Apollo Lunar Roving Vehicle in the 1970s, including this iteration of the GTU. Crewed test vehicles here on Earth like the GTU help NASA learn new ways that astronauts can live and work safely and productively on the Moon, and one day on the surface of Mars. As vendor designs evolve, the contracted LTV as well as the GTU allow for testing before missions head to the Moon. The vehicles on the ground also allow NASA to reduce some risks when it comes to adapting new technologies or specific rover design features.
Human surface mobility helps increase the exploration footprint on the lunar surface allowing each mission to conduct more research and increase the value to the scientific community. Through Artemis, NASA will send astronauts – including the first woman, first person of color, and its first international partner astronaut – to explore the Moon for scientific discovery, technology evolution, economic benefits, and to build the foundation for future crewed missions to Mars.
Learn about the rovers, suits, and tools that will help Artemis astronauts to explore more of the Moon:
https://go.nasa.gov/3MnEfrB
Share
Details
Last Updated Oct 02, 2024 Related Terms
Humans in Space Artemis Artemis 5 Exploration Systems Development Mission Directorate Johnson Space Center xEVA & Human Surface Mobility Explore More
2 min read Mariachi and Moonshots: Melissa Moreno Orchestrates Gateway Communications
Article 2 days ago 2 min read Station Science Top News: Sept. 27, 2024
Article 2 days ago 5 min read Aerospace Medicine Clerkship
Article 2 days ago Keep Exploring Discover More Topics From NASA
Space Launch System (SLS)
Orion Spacecraft
Human Landing System
Commercial Space
View the full article
-
By NASA
Skywatching Home What’s Up: October 2024… Skywatching Skywatching Home Eclipses What’s Up Explore the Night Sky Night Sky Network More Tips and Guides FAQ Comets: Unpredictable, But Irresistible
A new comet is passing through the inner solar system! Time will tell if it’s the brightest of the year, once it appears in twilight after about October 14.
Skywatching Highlights
All month – Planet visibility report: Look for Venus low in the west just after sunset; Saturn can be seen toward the southeast as soon as it gets dark; Mars rises around midnight; and Jupiter rises in the first half of the night (rising earlier as the month goes on). October 2 – New moon October 11 – Europa is easily observable to one side of Jupiter by itself this morning using binoculars. October 14-31 – Comet C/2023 A3 (Tsuchinshan-ATLAS) becomes visible low in the west following sunset. If the comet’s tail is well-illuminated by sunlight, it could be visible to the unaided eye. The first week and a half (Oct. 14-24) is the best time to observe, using binoculars or a small telescope. October 13-14 – After dark both nights, look for the nearly full Moon with Saturn toward the southeast. October 17 – Full moon October 20 – The Moon rises near Jupiter, with the giant planet looking extremely bright. You should be able to find them low in the east after around 10 pm. October 23-24 – Early risers will be able to spot Mars together with the Moon, high overhead in the south both mornings. October 25 – Europa is easily observable to one side of Jupiter by itself this morning using binoculars. Transcript
What’s Up for October?
This month’s viewing tips for Venus, Saturn, Mars and Jupiter. When’s the best time to observe the destination of NASA’s next deep space mission? And how you can see a (potentially bright) comet this month?
And watch our video ’till the end for photos of highlights from last month’s skies.
Sky chart showing Mars near the Moon on October 23. The pair appear quite high overhead, along with Jupiter. NASA/JPL-Caltech Up first, we look at the visibility of the planets in October. Look for Venus low in the west just after sunset. It’s setting by the time the sky is fully dark. Saturn is visible toward the southeast as soon as it gets dark out, and sets by dawn. Mars rises around midnight all month. By dawn it has climbed quite high into the south-southeastern sky, appearing together with Jupiter. Now, Jupiter is rising in the first half of the night. In early October you’ll find it high in the south as dawn approaches, and later in the month it’s progressed farther over to the west before sunrise.
And, speaking of Jupiter, NASA plans to launch its latest solar system exploration mission to one of the giant planet’s moons this month. Europa Clipper is slated to blast off as early as October 10th. It’s thought that Europa holds an enormous ocean of salty liquid water beneath its icy surface. That makes this the first mission dedicated to studying an ocean world beyond Earth. Europa Clipper is designed to help us understand whether this icy moon could support some form of life, and along the way it’ll teach us more about the conditions that make a world habitable.
Now, if you’ve ever pointed binoculars or a telescope at Jupiter, you know the thrill of seeing the little star-like points of light next to it that are its four large moons, which were first observed by Galileo in 1610.
There are two mornings in October, the 11th and the 25th, when you can most easily observe Europa. These are times when the moon is at its greatest separation from the planet as seen from here on Earth, and it’s all by itself to one side of Jupiter. So be sure to have your own peek at Jupiter’s moon Europa this month, as a new NASA mission begins its journey to explore an ocean in the sky.
Now a look at Moon and planet pair-ups for October. On the 13th and 14th after dark, look for the nearly full Moon with Saturn toward the southeast. Then on the evening of October 20th, the Moon rises near Jupiter, with the giant planet looking extremely bright.
You should be able to find them low in the east after around 10 pm that night. Then, in the morning of Oct. 23rd and 24th, early risers will be able to spot Mars together with the Moon, high overhead in the south.
Sky chart showing the location of Comet C/2023 A3 between Oct. 14 and Oct 24 following sunset. The comet climbs higher each evening, but also grows fainter. NASA/JPL-Caltech October offers a chance to observe what could be the brightest comet of the year. Earlier this year we got a look at Comet 12P, which was visible with binoculars but not super bright. Now another of these ancient and icy dust balls is streaking through our neighborhood on an 80,000-year orbit from the distant reaches of the Oort Cloud. The comet, known as C/2023 A3, aka Tsuchinshan-ATLAS, is currently speeding through the inner solar system. It passed its closest to the Sun in late September, and will be at its closest to Earth on October 13th. And after that time, through the end of the month, will be the best time to look for it. This is when the comet will become visible low in the western sky beginning during twilight.
It will quickly rise higher each subsequent evening, making it easier to observe, but it’ll also be getting a little fainter each night. As with all comets, predictions for how bright it could get are uncertain. If the comet’s tail is brilliantly illuminated by the Sun, predictions show that it could become bright enough to see with the unaided eye. But comets have a way of surprising us, so we’ll just have to wait and see.
Your best shot at seeing it will be from around October 14th through the 24th, with binoculars or a small telescope, and a reasonably clear view toward the west. So good luck, and clear skies, comet hunters!
Watch our video for views of what some of the highlights we told you about in last month’s video actually looked like.
The phases of the Moon for October 2024. NASA/JPL-Caltech And here are the phases of the Moon for October. Stay up to date on all of NASA’s missions exploring the solar system and beyond at science.nasa.gov. I’m Preston Dyches from NASA’s Jet Propulsion Laboratory, and that’s What’s Up for this month.
Keep Exploring Discover More Topics From NASA
Skywatching
Skywatching FAQ
Frequently asked questions about skywatching, answered by NASA.
What’s Up
Explore the Night Sky
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.