Jump to content

The CUTE Mission: Innovative Design EnablesObservations of Extreme Exoplanets from a SmallPackage


NASA

Recommended Posts

  • Publishers
5 Min Read

The CUTE Mission: Innovative Design EnablesObservations of Extreme Exoplanets from a SmallPackage

A satellite above planet Earth; the satellite consists of a rectangular box with four flat rectangular solar array panels attached.
Fig 1: Artist’s concept of the CUTE mission on-orbit. CUTE has been operating in a 560 km sun-synchronous orbit since September 2021.
Credits:
NASA

Of the approximately 5,500 exoplanets discovered to date, many have been found to orbit very close to their parent stars. These close-in planets provide a unique opportunity to observe in detail the phenomena critical to the development and evolution of our own solar system, including atmospheric mass loss and interactions with the host star. NASA’s Colorado Ultraviolet Transit Experiment (CUTE) mission, launched in September 2021, employed a new design that enabled exploration of these processes using a small spacecraft for the first time. CUTE provides unique spectral diagnostics that trace the escaping atmospheres of close-in, ultra-hot, giant planets. In addition, CUTE’s dedicated mission architecture enables the survey duration required to characterize atmospheric structure and variability on these worlds.

Atmospheric escape is a fundamental process that affects the structure, composition, and evolution of many planets. It has operated on all of the terrestrial planets in our solar system and likely drives the demographics of the short-period planet population characterized by NASA’s Kepler mission. In fact, atmospheric escape ultimately may be the determining factor when predicting the habitability of temperate, terrestrial exoplanets. Escaping exoplanet atmospheres were first observed in the hydrogen Lyman-alpha line (121nm) in 2003. However, contamination by neutral hydrogen in both the intervening interstellar medium and Earth’s upper atmosphere makes obtaining high-quality Lyman-alpha transit measurements for most exoplanets very challenging. By contrast, a host star’s near-ultraviolet (NUV; 250 – 350 nm) flux is two to three orders of magnitude higher than Lyman-alpha, and transit light curves can be measured against a smoother stellar surface intensity distribution.

This knowledge motivated a team led by Dr. Kevin France at the University of Colorado Laboratory for Atmospheric and Space Physics to design the CUTE mission (Fig 1). The team proposed the CUTE concept to NASA through the ROSES/Astrophysics Research and Analysis (APRA) Program in February 2016 and NASA funded the project in July 2017. The CUTE instrument pioneered use of two technologies on a small space mission: a novel, rectangular Cassegrain telescope (20cm × 8cm primary mirror) and a miniature, low-resolution spectrograph operating from approximately 250 – 330 nm. The rectangular telescope was fabricated to accommodate the unique instrument volume of the 6U CubeSat form factor, an adaptation that delivers approximately three times the collecting area of a traditional, circular aperture telescope.  The compact spectrograph meets the spectral resolution requirements of the mission while using scaled down component technology adapted from the Hubble Space Telescope.

Flat board with boxes and wires attached, held by person wearing gloves
Fig 2 – Image of the CUTE science instrument, including rectangular telescope and miniaturized spectrograph, mounted to the spacecraft bus.
Credit: CUTE Team, University of Colorado

This novel instrument design enables CUTE to measure NUV with similar precision as larger missions even in the more challenging thermal and pointing environment experienced by a CubeSat. In addition, the CUTE instrument’s NUV bandpass enables it to measure iron and magnesium ions from highly extended atmospheric layers that ground-based instruments cannot access. The CUTE science instrument is incorporated into a 6U Blue Canyon Technologies spacecraft bus that provides power, command and data handling, attitude control, and communications. This CubeSat platform enables CUTE to observe numerous transits of a given planet. The spectrogram from the CUTE instrument is recorded on a UV-optimized commercial off-the-shelf charge-coupled device (CCD), onboard data processing is performed, and data products are relayed to a ground station at the University of Colorado.

Several individuals dressed in protective clothing, masks and gloves attach a rectangular box to rails.
Fig 3 –Graduate student Arika Egan (center) and electrical engineer Nicholas DeCicco (left) install CUTE into the LANDSAT-9 secondary payload dispenser at Vandenberg Space Force Base.
Credit: CUTE Team, University of Colorado

CUTE was launched as a secondary payload on NASA’s LANDSAT-9 mission on September 27, 2021 into a Sun-synchronous orbit with a 560 km apogee. CUTE deployed from the payload dispenser (Fig 2) approximately two hours after launch and then deployed its solar arrays. Spacecraft beacon signals were identified by the amateur radio community on the first orbit and communications were established with the ground station at the University of Colorado the following day. On-orbit commissioning of the spacecraft and instrument concluded in February 2022 and the mission has been conducting science operations since that time.

As of February 2024, CUTE is actively acquiring science and calibration data (Fig 3), and has observed between 6 and 11 transits of seven different exoplanetary systems. Data downlink efficiency is the primary factor limiting the number of targets observed over the course of the mission. CUTE light curves and transit spectroscopy are revealing extended NUV atmospheres on some planets (Fig 4) and potential time variability in the atmospheric transmission spectra of others. For example, observations of the ultra-hot exoplanet, Jupiter WASP-189b, indicate a highly extended atmosphere. Magnesium ions are observed to be gravitationally unbound from the planet, which is evidence for active escape of heavy elements in this system. CUTE data are being archived by the NASA Exoplanet Science Institute (NExScI).

At top: a graph depicting a nearly straight line from left to right against a purple background. At bottom: a graph showing wavelength on the x axis and flux on the y axis; a blue line zig-zags downward from left to right
Fig 4 – Flight data from CUTE showing raw CCD observations (top) and calibrated one-dimensional spectra (bottom).
Image credit: France et al (2023)
Graph showing optical data in blue and NUV data from visit 1 in black, visit 2 in green, and visit 3 in pink. Most data points fall on a straight line from left to right, except for a significant dip at orbital phase 0.
Fig 5 – CUTE NUV transit light curve of the ultra-hot exoplanet, Jupiter WASP-189b. This light curve was created from three separate transit visits to the planet.
Image credit: Sreejith, et al (2023)

CUTE successfully demonstrated the use of a non-circular telescope and miniature spectrograph design for small space missions, an approach that has been subsequently adopted by several NASA and international mission designs, including NASA’s new Monitoring Activity from Nearby sTars with uv Imaging and Spectroscopy (MANTIS) mission. CUTE’s demonstration of sub-1% NUV precision has shown that the precision achieved by large UV astronomy missions can also be achieved by a CubeSat. In addition, student training and early-career mentorship have been key ingredients to CUTE’s mission success. So far, over 20 early career students and professionals have trained and participated in CUTE activities—ranging from science to engineering to operations.

PROJECT LEAD

Professor Kevin France, Laboratory for Atmospheric and Space Physics/University of Colorado

SPONSORING ORGANIZATION

Astrophysics Division Astrophysics Research and Analysis Program

Share

Details

Last Updated
Feb 27, 2024

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Illustration of logistics elements on the lunar surface. NASA NASA is asking U.S. industry to submit innovative architecture solutions that could help the agency land and move cargo on the lunar surfaced during future Artemis missions. Released in September, the agency’s request for proposal also supports NASA’s broader Moon to Mars Objectives.
      Previously, NASA published two white papers outlining lunar logistics and mobility gaps as part of its Moon to Mars architecture development effort that augmented an earlier white paper on logistics considerations. The current ask, Lunar Logistics and Mobility Studies, expects proposing companies to consider these publications, which describe NASA’s future needs for logistics and mobility.
      “NASA relies on collaborations from diverse partners to develop its exploration architecture,” said Nujoud Merancy, deputy associate administrator, strategy and architecture in the Exploration Systems Development Mission Directorate at NASA Headquarters in Washington. “Studies like this allow the agency to leverage the incredible expertise in the commercial aerospace community.”
      Lunar Logistics Drivers, Needs
      Logistics items, including food, water, air, and spare parts, comprise a relatively large portion of the cargo NASA expects to need to move around on the Moon, including at the lunar South Pole where the agency plans to send crew in the future.
      The Lunar Logistics Drivers and Needs white paper outlines the importance of accurately predicting logistics resupply needs, as they can heavily influence the overall architecture and design of exploration missions.
      As the agency progresses into more complex lunar missions, NASA will require more and more lunar logistics as the agency increases mission frequency and duration. This current proposal seeks industry studies that could help inform NASA’s approach to this growing need.
      Lunar Mobility Drivers, Needs
      The white paper discusses the transportation of landed cargo and exploration assets from where they are delivered to where they are used, such as to locations with ideal lighting, away from ascent vehicle landing sites, or near other assets. These distances can range from yards to miles away from landing locations, and the ability to move around landing sites easily and quickly are key to exploring the lunar surface efficiently.
      NASA’s current planned lunar mobility elements, such as the Lunar Terrain Vehicle and Pressurized Rover, have a capability limit of about 1,760 pounds (800 kilograms) and will primarily be used to transport astronauts around the lunar surface. However, future missions could include a need to move cargo totaling around 4,400 to 13,000 pounds (2,000 to 6,000 kg). To meet this demand, NASA must develop new mobility capabilities with its partners.
      Lunar Surface Cargo
      The Lunar Surface Cargo white paper characterizes lunar surface cargo delivery needs, compares those needs with current cargo lander capabilities, and outlines considerations for fulfilling this capability gap. While cargo delivery capabilities currently included in the Moon to Mars architecture — like CLPS (Commercial Lunar Payload Services) and human-class delivery landers — can meet near-term needs, there are substantial gaps for future needs.
      Access to a diverse fleet of cargo landers would empower a larger lunar exploration footprint. A combination of international partnerships and U.S. industry-provided landers could supply the concepts and capabilities to meet this need. The request for proposals doesn’t explicitly seek new lander concepts but does ask for integrated assessments of logistics that can include transportation elements.
      “We’re looking for industry to offer creative insights that can inform our logistics and mobility strategy,” said Brooke Thornton, industry engagement lead for NASA’s Strategy and Architecture Office. “Ultimately, we’re hoping to grow our awareness of the unique capabilities that are or could become a part of the commercial lunar marketplace.”
      This is the latest appendix to NASA’s Next Space Technologies for Exploration Partnerships (NextSTEP-2). Solicitations under NextSTEP seek commercial development of capabilities that empower crewed exploration in deep space. NASA published the latest NextSTEP omnibus, NextSTEP-3, on Sept. 27.
      Request for Proposals
      https://sam.gov/opp/2291c465203240388302bb1f126c3db9/view
      View the full article
    • By European Space Agency
      Video: 00:04:05 ESA’s Hera mission lifted off on a SpaceX Falcon 9 from Cape Canaveral Space Force Station in Florida, USA, on 7 October at 10:52 local time (16:52 CEST, 14:52 UTC).
      Hera is ESA’s first planetary defence mission. It will fly to a unique target among the 1.3 million asteroids in our Solar System – the only body to have had its orbit shifted by human action – to solve lingering unknowns associated with its deflection.
      Hera will carry out the first detailed survey of a ‘binary’ – or double-body – asteroid, 65803 Didymos, which is orbited by a smaller body, Dimorphos. Hera’s main focus will be Dimorphos, whose orbit around the main body was previously altered by NASA’s kinetic-impacting DART spacecraft.
      By sharpening scientific understanding of this ‘kinetic impact’ technique of asteroid deflection, Hera should turn the experiment into a well-understood and repeatable technique for protecting Earth from an asteroid on a collision course.
      View the full article
    • By European Space Agency
      Video: 00:03:03 ESA’s Hera mission lifted off on a SpaceX Falcon 9 from Cape Canaveral Space Force Station in Florida, USA, on 7 October at 10:52 local time (16:52 CEST, 14:52 UTC).
      Hera is ESA’s first planetary defence mission. It will fly to a unique target among the 1.3 million asteroids in our Solar System – the only body to have had its orbit shifted by human action – to solve lingering unknowns associated with its deflection.
      Hera will carry out the first detailed survey of a ‘binary’ – or double-body – asteroid, 65803 Didymos, which is orbited by a smaller body, Dimorphos. Hera’s main focus will be Dimorphos, whose orbit around the main body was previously altered by NASA’s kinetic-impacting DART spacecraft.
      By sharpening scientific understanding of this ‘kinetic impact’ technique of asteroid deflection, Hera should turn the experiment into a well-understood and repeatable technique for protecting Earth from an asteroid on a collision course.
      View the full article
    • By European Space Agency
      Image: Mission control GO for Hera launch View the full article
    • By NASA
      On Sept. 30, 1994, space shuttle Endeavour took to the skies on its 7th trip into space. During the 11-day mission, the STS-68 crew of Commander Michael A. Baker, Pilot Terrence “Terry” W. Wilcutt, and Mission Specialists Steven L. Smith, Daniel W. Bursch, Peter J.K. “Jeff” Wisoff, and Payload Commander Thomas “Tom” D. Jones operated the second Space Radar Laboratory (SRL-2) as part of NASA’s Mission to Planet Earth. Flying five months after SRL-1, results from the two missions provided unprecedented insight into Earth’s global environment across contrasting seasons. The astronauts observed pre-selected sites around the world as well as a volcano that erupted during their mission using SRL-2’s U.S., German, and Italian radar instruments and handheld cameras.

      Left: The STS-68 crew patch. Right: Official photo of the STS-68 crew of Thomas D. Jones, front row left, Peter J.K. “Jeff” Wisoff, Steven L. Smith, and Daniel W. Bursch; Michael A. Baker, back row left, and Terrence W. Wilcutt.
      In August 1993, NASA named Jones as the SRL-2 payload commander, eight months before he flew as a mission specialist on STS-59, the SRL-1 mission. When NASA could not meet JPL’s request to fly their personnel as payload specialists on the SRL missions, the compromise solution reached had one NASA astronaut – in this case, Jones – fly on both missions. Selected as an astronaut in 1990, STS-59 marked Jones’ first flight and STS-68 his second. In October 1993, NASA named the rest of the STS-68 crew. For Baker, selected in 1985, SRL-2 marked his third trip into space, having flown on STS-43 and STS-52. Along with Jones, Wilcutt, Bursch, and Wisoff all came from the class of 1990, nicknamed The Hairballs. STS-68 marked Wilcutt’s first spaceflight, while Bursch had flown once before on STS-51 and Wisoff on STS-57. Smith has the distinction as the first from his class of 1992 – The Hogs – assigned to a spaceflight, but the Aug. 18 launch abort robbed him of the distinction of the first to actually fly, the honor going instead to Jerry M. Linenger when STS-64 ended up flying before STS-68.

      Left: The Spaceborne Imaging Radar-C (SIR-C) in Endeavour’s payload bay in the Orbiter Processing Facility at NASA’s Kennedy Space Center in Florida. Middle: Endeavour on Launch Pad 39A. Right: STS-68 crew in the Astrovan on its way to Launch Pad 39A for the Terminal Countdown Demonstration Test.
      The SRL payloads consisted of three major components – the Spaceborne Imaging Radar-C (SIR-C), built by NASA’s Jet Propulsion Laboratory in Pasadena, California, the X-band Synthetic Aperture Radar (X-SAR) sponsored by the German Space Agency DLR and the Italian Space Agency ASI, and the Measurement of Air Pollution from Satellites (MAPS), built by NASA’s Langley Research Center in Hampton, Virginia. Scientists from 13 countries participated in the SRL data gathering program, providing ground truth at preselected observation sites. The SIR system first flew as SIR-A on STS-2 in November 1981, although the shortened mission limited data gathering. It flew again as SIR-B on STS-41G in October 1984, and gathering much useful data.
      Building on that success, NASA planned to fly an SRL mission on STS-72A, launching in March 1987 into a near-polar orbit from Vandenberg Air Force, now Space Force, Base in California, but the Challenger accident canceled those plans. With polar orbits no longer attainable, a 57-degree inclination remained the highest achievable from NASA’s Kennedy Space Center (KSC) in Florida, still allowing the radar to study more than 75% of Earth’s landmasses. As originally envisioned, SRL-2 would fly about six months after the first mission, allowing data gathering during contrasting seasons. Shuttle schedules moved the date of the second mission up to August 1994, only four months after the first. But events intervened to partially mitigate that disruption.

      Left: Launch abort at Launch Pad 39A at NASA’s Kennedy Space Center in Florida. Right: A few days after the launch abort, space shuttle Discovery arrives at Launch Pad 39B, left, with space shuttle Endeavour still on Launch Pad 39A, awaiting its rollback to the Vehicle Assembly Building.
      Endeavour arrived back at KSC following its previous flight, the STS-59 SRL-1 mission, in May 1994. Workers in KSC’s Orbiter Processing Facility refurbished the SRL-1 payloads for their reflight and serviced the orbiter, rolling it over to the Vehicle Assembly Building (VAB) on July 21 for mating with its External Tank and Solid Rocket Boosters (SRBs). Endeavour rolled out to Launch Pad 39A on July 27. The six-person STS-68 crew traveled to KSC to participate in the Terminal Countdown Demonstration Test on Aug. 1, essentially a dress rehearsal for the launch countdown. They returned to KSC on Aug. 15, the same day the final countdown began.
      Following a smooth countdown leading to a planned 5:54 a.m. EDT launch on Aug. 18, Endeavour’s three main engines came to life 6.6 seconds before liftoff. With just 1.8 seconds until the two SRBs ignited to lift the shuttle stack off the pad, the Redundant Set Launch Sequencer (RSLS) stopped the countdown and shutdown the three main engines, two of which continued running past the T-zero mark. It marked the fifth and final launch abort of the shuttle program, and the closest one to liftoff. Bursch now had the distinction as the only person to have experienced two RSLS launch aborts, his first one occurring on STS-51 just a year earlier. Engineers traced the shutdown to higher than anticipated temperatures in a high-pressure oxygen turbopump in engine number three. The abort necessitated a rollback of Endeavour to the VAB on Aug. 24 to replace all three main engines with three engines from Atlantis on its upcoming STS-66 mission. Engineers shipped the suspect engine to NASA’s Stennis Space Center in Mississippi for extensive testing, where it worked fine and flew on STS-70 in July 1995. Meanwhile, Endeavour returned to Launch Pad 39A on Sept. 13.

      Liftoff of Endeavour on the STS-68 mission.
      On Sept. 30, 1994, Endeavour lifted off on time at 6:16 a.m. EDT, and eight and half minutes later delivered its crew and payloads to space. Thirty minutes later, a firing of the shuttle’s Orbiter Maneuvering System (OMS) engines placed them in a 132-mile orbit inclined 57 degrees to the equator. The astronauts opened the payload bay doors, deploying the shuttle’s radiators, and removed their bulky launch and entry suits, stowing them for the remainder of the flight.

      Left: The Space Radar Laboratory-2 payload in Endeavour’s cargo bay, showing SIR-C (with the JPL logo on it), X-SAR (the long bar atop SIR-C), and MAPS (with the LaRC logo on it). Middle: The STS-68 Blue Team of Daniel W. Bursch, top, Steven L. Smith, and Thomas D. Jones in their sleep bunks. Right: Tile damage on Endeavour’s starboard Orbital Maneuvering System pod caused by a strike from a tile from Endeavour’s front window rim that came loose during the ascent.

      Left: Steven L. Smith, left, and Peter J.K. “Jeff” Wisoff set up the bicycle ergometer in the shuttle’s middeck. Middle: The STS-68 Red Team of Terrence W. Wilcutt, top, Wisoff, and Michael A. Baker in their sleep bunks. Right: Wilcutt consults the flight plan for the next maneuver.
      The astronauts began to convert their vehicle into a science platform, and that included breaking up into two teams to enable 24-hour-a-day operations. Baker, Wilcutt, and Wisoff made up the Red Team while Smith, Bursch, and Jones made up the Blue Team. Within five hours of liftoff, the Blue Team began their sleep period while the Red Team started their first on orbit shift by activating the SIR-C and X-SAR instruments in the payload bay and some of the middeck experiments. During inspection of the OMS pods, the astronauts noted an area of damaged tile, later attributed to an impact from a tile from the rim of Endeavour’s front window that came loose during the ascent to orbit. Engineers on the ground assessed the damage and deemed it of no concern for the shuttle’s entry.

      Left: Michael A. Baker prepares to take photographs through the commander’s window. Middle: Thomas D. Jones, left, Daniel W. Bursch, and Baker hold various cameras in Endeavour’s flight deck. Right: Terrence W. Wilcutt with four cameras.

      Left: Thomas D. Jones, left, and Daniel W. Bursch consult a map in an atlas developed specifically for the SRL-2 mission. Middle: Jones takes photographs through the overhead window. Right: Steven L. Smith takes photographs through the overhead window.
      By sheer coincidence, the Klyuchevskaya volcano on Russia’s Kamchatka Peninsula began erupting on the day STS-68 launched. By the mission’s second day, the astronauts trained not only their cameras on the plume of ash reaching 50,000 feet high and streaming out over the Pacific Ocean but also the radar instruments. This provided unprecedented information of this amazing geologic event to scientists who could also compare these images with those collected during SRL-1 five months earlier.

      Left: Eruption of Klyuchevskaya volcano on Russia’s Kamchatka Peninsula. Middle: Radar image of Klyuchevskaya volcano. Right: Comparison of radar images of Mt. Pinatubo in The Philippines taken during SRL-1 in April 1994 and SRL-2 in October 1994.
      The STS-68 crew continued their Earth observations for the remainder of the 11-day flight, having received a one-day extension from Mission Control. On the mission’s eighth day, they lowered Endeavour’s orbit to 124 miles to begin a series of interferometry studies that called for extremely precise orbital maneuvering to within 30 feet of the orbits flown during SRL-1, the most precise in shuttle history to that time. These near-perfectly repeating orbits allowed the construction of three-dimensional contour images of selected sites. The astronauts repaired a failed payload high rate recorder and continued working on middeck and biomedical experiments.

      Left: Steven L. Smith, left, conducts a biomedical experiment as Michael A. Baker monitors. Right: Peter J.K. “Jeff” Wisoff, left, and Smith repair a payload high rate recorder.

      A selection of STS-68 crew Earth observation photographs. Left: The San Francisco Bay area. Middle left: The Niagara Falls and Buffalo area. Middle right: Riyadh, Saudi Arabia. Right: Another view of the Klyuchevskaya volcano on Russia’s Kamchatka Peninsula.

      The high inclination orbit afforded the astronauts great views of the aurora australis, or southern lights.
      On this mission in particular, the STS-68 astronauts spent considerable time looking out the window, their images complementing the data taken by the radar instruments. Their high inclination orbit enabled views of parts of the planet not seen during typical shuttle missions, including spectacular views of the southern lights, or aurora australis.

      Two versions of the inflight STS-68 crew photo.
      On flight day 11, with most of the onboard film exposed and consumables running low, the astronauts prepared for their return to Earth the following day. Baker and Wilcutt tested Endeavour’s reaction control system thrusters and aerodynamic surfaces in preparation for deorbit and descent through the atmosphere, while the rest of the crew busied themselves with shutting down experiments and stowing away unneeded equipment.

      Left: Endeavour moments before touchdown at California’s Edwards Air Force Base. Middle: Michael A. Baker brings Endeavour home to close out STS-68 and a successful SRL-2 mission. Right: Baker gets a congratulatory tap on the shoulder from Terrence W. Wilcutt following wheels stop.

      Left: As workers process Endeavour on the runway, Columbia atop a Shuttle Carrier Aircraft (SCA) flies overhead on its way to the Palmdale facility for refurbishment. Right: Mounted atop an SCA, Endeavour departs Edwards for the cross-country trip to NASA’s Kennedy Space Center in Florida.
      On Oct. 11, the astronauts closed Endeavour’s payload bay doors, donned their launch and entry suits, and strapped themselves into their seats for entry and landing. Thick cloud cover at the KSC primary landing site forced first a two-orbit delay in their landing, then an eventual diversion to Edwards Air Force Base (AFB) in California. The crew fired Endeavour’s OMS engines to drop out of orbit. Baker piloted Endeavour to a smooth landing at Edwards, ending the 11-day 5-hour 46-minute flight. The crew had orbited the Earth 182 times. Workers at Edwards safed the vehicle and placed it atop a Shuttle Carrier Aircraft for the ferry flight back to KSC. The duo left Edwards on Oct. 19, and after stops at Biggs Army Airfield in El Paso, Texas, Dyess AFB in Abilene, Texas, and Eglin AFB in the Florida panhandle, arrived at KSC the next day. Workers there began preparing Endeavour for its next flight, STS-67, in March 1995. Meanwhile, a Gulfstream jet flew the astronauts back to Ellington Field in Houston for reunions with their families.
      Diane Evans, SIR-C project scientist, summarized the scientific return from STS-68, “We’ve had a phenomenally successful mission.” The radar instrument collected 60 terabits of data, filling 67 miles of magnetic tape during the mission. In 1990s technology, that equated to a pile of floppy disks 15 miles high! In 2006, using an updated comparison, astronaut Jones equated that to a stack of CDs 65 feet high. The radar instruments completed 910 data takes of 572 targets during about 80 hours of imaging. To complement the radar data, the astronauts took nearly 14,000 photographs using 14 different cameras. To image the various targets required more than 400 maneuvers of the shuttle, requiring 22,000 keystrokes in the orbiter’s computer. The use of interferometry, requiring precision orbital tracking of the shuttle, to create three-dimensional topographic maps, marks another significant accomplishment of the mission. Scientists published more than 5,000 papers using data from the SRL missions.
      Enjoy the crew narrate a video about the STS-68 mission. Read Wilcutt’s recollections of the mission in his oral history with the JSC History Office.
      Explore More
      15 min read 55 Years Ago: Celebrations for Apollo 11 Continue as Apollo 12 Prepares to Revisit the Moon
      Article 2 weeks ago 8 min read 65 Years Ago: First Powered Flight of the X-15 Hypersonic Rocket Plane 
      Article 2 weeks ago 8 min read 55 Years Ago: Space Task Group Proposes Post-Apollo Plan to President Nixon
      Article 2 weeks ago View the full article
  • Check out these Videos

×
×
  • Create New...