Jump to content

Meet NASA’s Twin Spacecraft Headed to the Ends of the Earth


Recommended Posts

  • Publishers
Posted

5 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

Arctic Ocean
Sunlight glints off patches of ice in the Chukchi Sea, a part of the Arctic Ocean. NASA’s PREFIRE mission to Earth’s polar regions will explore how a warming world will affect sea ice loss, ice sheet melt, and sea level rise.
NASA/Kathryn Hansen

Launching in spring 2024, the two small satellites of the agency’s PREFIRE mission will fill in missing data from Earth’s polar regions.

Two new miniature NASA satellites will start crisscrossing Earth’s atmosphere in a few months, detecting heat lost to space. Their observations from the planet’s most bone-chilling regions will help predict how our ice, seas, and weather will change in the face of global warming.

About the size of a shoebox, the cube satellites, or CubeSats, comprise a mission called PREFIRE, short for Polar Radiant Energy in the Far-InfraRed Experiment. Equipped with technology proven at Mars, their objective is to reveal the full spectrum of heat loss from Earth’s polar regions for the first time, making climate models more accurate.

PREFIRE has been jointly developed by NASA and the University of Wisconsin-Madison, with team members from the universities of Michigan and Colorado.

The mission starts with Earth’s energy budget. In a planetary balancing act, the amount of heat energy the planet receives from the Sun should ideally be offset by the amount it radiates out of the Earth system into space. The difference between incoming and outgoing energy determines Earth’s temperature and shapes our climate.

PREFIRE mission will send two CubeSats – depicted in an artist’s concept orbiting Earth
The PREFIRE mission will send two CubeSats – depicted in an artist’s concept orbiting Earth – into space to study how much heat the planet absorbs and emits from its polar regions. These measurements will inform climate and ice models.
NASA/JPL-Caltech

Polar regions play a key role in the process, acting like Earth’s radiator fins. The stirring of air and water, through weather and ocean currents, moves heat energy received in the tropics toward the poles, where it is emitted as thermal infrared radiation – the same type of energy you feel from a heat lamp. Some 60% of that energy flows out to space in far-infrared wavelengths that have never been systematically measured.

PREFIRE can close that gap. “We have the potential to discover some fundamental things about how our planet works,” said Brian Drouin, scientist and deputy principal investigator for the mission at NASA’s Jet Propulsion Laboratory in Southern California.

“In climate projections, a lot of the uncertainty comes in from what we don’t know about the North and South poles and how efficiently radiation is emitted into space,” he said. “The importance of that radiation wasn’t realized for much of the Space Age, but we know now and are aiming to measure it.”

Launching from New Zealand two weeks apart in May, each satellite will carry a thermal infrared spectrometer. The JPL-designed instruments include specially shaped mirrors and detectors for splitting and measuring infrared light. Similar technology is used by the Mars Climate Sounder on NASA’s Mars Reconnaissance Orbiter to explore the Red Planet’s atmosphere and weather.

Miniaturizing the instruments to fit on CubeSats was a challenge for the PREFIRE engineering team. They developed a scaled-down design optimized for the comparatively warm conditions of our own planet. Weighing less than 6 pounds (3 kilograms), the instruments make readings using a device called a thermocouple, similar to the sensors found in many household thermostats.

Ground Zero for Climate Change

To maximize coverage, the PREFIRE twins will orbit Earth along different paths, overlapping every few hours near the poles.

Since the 1970s, the Arctic has warmed at least three times faster than anywhere else on Earth. Winter sea ice there has shrunk by more than 15,900 square miles (41,200 square kilometers) per year, a loss of 2.6% per decade relative to the 1981-2010 average. A change is occurring on the opposite side of the planet, too: Antarctica’s ice sheets are losing mass at an average rate of about 150 billion tons per year.

The implications of these changes are far reaching. Fluctuations in sea ice shape polar ecosystems and influence the temperature as well as circulation of the ocean. Meltwater from mile-thick ice sheets in Greenland and Antarctica is responsible for about one-third of the rise in global mean sea level since 1993.

“If you change the polar regions, you also fundamentally change the weather around the world,” said Tristan L’Ecuyer, a professor at the University of Wisconsin-Madison and the mission’s principal investigator. “Extreme storms, flooding, coastal erosion – all of these things are influenced by what’s going on in the Arctic and Antarctic.”

To understand and project such changes, scientists use climate models that take into account many physical processes. Running the models multiple times (each time under slightly different conditions and assumptions) results in an ensemble of climate projections. Assumptions about uncertain parameters, such as how efficiently the poles emit thermal radiation, can significantly impact the projections.

PREFIRE will supply new data on a range of climate variables, including atmospheric temperature, surface properties, water vapor, and clouds. Ultimately, more information will yield a more accurate vision of a world in flux, said L’Ecuyer.

“As our climate models converge, we’ll start to really understand what the future’s going to look like in the Arctic and Antarctic,” he added.

News Media Contacts

Jane J. Lee / Andrew Wang
Jet Propulsion Laboratory, Pasadena, Calif.
818-354-0307 / 626-379-6874

Written by Sally Younger

2024-014

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Christine Braden values new experiences that broaden her perspective; a mindset that has guided her 26-year career at NASA’s Johnson Space Center in Houston, where she currently serves as a senior systems engineer in the Commercial Low Earth Orbit Development Program. In her role, Braden works with engineering teams to develop commercial space stations that will prioritize the safety of astronauts while maximizing cost-effectiveness and the scientific research capabilities onboard. 

      Managed by NASA’s Space Operations Mission Directorate, the program supports the development of commercially owned and operated space stations in low Earth orbit from which the agency, along with other customers, can purchase services and stimulate the growth of commercial activities in space. Designing and developing these space stations is the first step of NASA’s two-phase approach, enabling the agency to certify stations and procure services as one of many customers.

      With a bachelor’s degree in Technical Management from Embry-Riddle Aeronautical University, Braden brings a strong engineering foundation to her work. However, her role unique because it allows her to merge technical expertise with her creative instincts. 

      “My team must think outside the box to define new ways that ensure that the commercial providers’ technical integrations, requirements, development, and operations are designed to the highest degree possible,” said Braden.

      Recently, she proposed a certification and systems engineering architecture that redefines how companies will interface with NASA and each other in an evolving landscape. Braden’s hybrid approach strikes a balance, allowing companies to innovate while favoring shared assurance and accountability. It also gives NASA situational awareness of the companies’ design, tests, mission, and operational approaches. As a result of her efforts, Braden was recognized with an “On the Spot” award.

      Christine Braden receives an “On the Spot” award from Angela Hart, program manager for NASA’s Commercial Low Earth Orbit Development Program, in March 2024.NASA/Helen Arase Vargas
      Looking ahead, Braden envisions a world where commercial space stations are a hub for science and technology, spacecraft are more efficient, spaceflight is more accessible, humans are back on the Moon, and Mars is the next frontier. In reflecting on these agency-wide goals, Braden finds that working with passionate team members makes her day-to-day work truly special and enjoyable.

      “I am a part of a small, close-knit team that works together to make these advancements in space exploration happen for the world,” said Braden. “Working at NASA is a once-in-a-lifetime opportunity that not only defines my working life going forward but also provides me with an experience I can share with some truly amazing people.” 
      Working at NASA is a once-in-a-lifetime opportunity that not only defines my working life going forward but also provides me with an experience I can share with some truly amazing people.
      Christine Braden
      Senior Systems Engineer, Commercial Low Earth Orbit Development Program

      Outside of work, Braden is inspired by her faith, which encourages her to see things from new perspectives and try to understand people from all walks of life. Additionally, Braden is a lifelong learner who loves listening to podcasts, watching documentaries, and reading web articles. She is eager to learn everything from music and dance to plants and animals. 

      “When I look through scientific websites where new planets and galaxies are discovered, it makes me think of ways humanity may expand itself to the stars, and ways that we can preserve the life we have here on Earth,” said Braden.

      On the topic of preservation, one of Braden’s many hobbies is antique restoration. “It reminds me of my dad and grandfather restoring homes together during my childhood and gives me hope that I can inspire my children as they watch me follow in our family’s footsteps,” said Braden. Her other hobbies include gardening and family activities such as puzzles, board games, watching television, playing video games, hunting, and traveling.

      As a driven individual known for her creativity and curiosity, Braden’s fresh ideas and spirit are key in guiding the agency’s progress into new frontiers. 

      NASA’s Space Operations Mission Directorate maintains a continuous human presence in space for the benefit of people on Earth. The programs within the directorate are the hub of NASA’s space exploration efforts, enabling Artemis, commercial space, science, and other agency missions through communication, launch services, research capabilities, and crew support.

      To learn more about NASA’s Space Operation Mission Directorate, visit: 
      https://www.nasa.gov/directorates/space-operations
      Share
      Details
      Last Updated May 15, 2025 Related Terms
      Space Operations Mission Directorate Explore More
      4 min read NASA Enables SPHEREx Data Return Through Commercial Partnership
      Article 1 week ago 4 min read Meet the Space Ops Team: Becky Brocato
      Article 4 weeks ago 3 min read Meet the Space Ops Team: Anum Ashraf
      Article 2 months ago Keep Exploring Discover Related Topics
      Humans In Space
      International Space Station
      Commercial Space
      NASA Directorates
      View the full article
    • By USH
      In recent months, Earth has been experiencing a string of bizarre and unsettling phenomena. Massive power outages have struck Spain and Portugal, with similar blackouts occurring across the globe. Aircraft have inexplicably crashed or fallen from the sky. Lights - streetlamps, billboards, car headlights, even indoor lighting are flickering erratically, and the problem persists. 

      Power failures have disrupted air traffic control centers. Strange, unexplained noises have been heard coming from the sky. In parts of the U.S., blue rain has reportedly fallen. The Schumann Resonance, Earth’s natural electromagnetic frequency, has spiked dramatically. Most disturbing of all, now birds have been seen suddenly dropping dead, either mid-flight or while perched on power lines. 
      It feels as if the planet is enveloped in a powerful, unseen force, an invisible energy field swarming the Earth, disrupting both man-made and natural systems. But where is it coming from? 
      One theory suggests that we may be experiencing the delayed impact of a massive astronomical event that occurred thousands of years ago, such as a supernova, the cataclysmic explosion of a dying star. These cosmic blasts release enormous amounts of electromagnetic radiation, including gamma rays and X-rays, which can travel across space for thousands or even millions of years before reaching other celestial bodies, like Earth. 
      Interestingly, some scientists have speculated that a gamma-ray burst from a distant supernova might have triggered the Ordovician mass extinction around 440 million years ago. If such radiation can wipe out entire ecosystems, could a similar event be silently influencing the strange phenomena we're seeing today? 
      It might sound improbable, but what if Earth is now being bathed in residual energy from a long-past cosmic event, energy that is only just now arriving and interacting with our atmosphere and technology? 
      And if that's true… could these strange occurrences be the early signs of something even more serious to come? 
      Additional: MrMBB333, a well-known YouTuber, is also closely following these remarkable events. He shares daily live footage from around the world and often questions what is truly happening. In his latest video below he shares the mystery of the birds dropping dead while perched on power lines.
         
      You can watch his videos on his YouTube channel: https://www.youtube.com/user/MrMBB333/videosView the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      When most people think of NASA, they picture rockets, astronauts, and the Moon. But behind the scenes, a group of inventors is quietly rewriting the rules of what’s possible — on Earth, in orbit, and beyond. Their groundbreaking inventions eventually become technology available for industry, helping to shape new products and services that improve life around the globe. For their contributions to NASA technology, we welcome four new inductees into the 2024-2025 NASA Inventors Hall of Fame

      A robot for space and the workplace

      Myron (Ron) Diftler led the team behind Robonaut 2 (R2), a humanoid robot developed with General Motors. The goal was to create a robot that could help humans both in space and on the factory floor. The R2 robot became the first humanoid robot in space aboard the International Space Station, and part of its technology was licensed for use on Earth, leading to a grip-strengthening robotic glove to help humans with strenuous, repetitive tasks. From factories to space exploration, Diftler’s work has real-world impact. 

      Some of the toughest electronic chips on and off Earth

      Technology developed to one day explore the surface of Venus has to be tough enough to survive the planet where temperatures hit 860°F and the atmosphere is akin to battery acid. Philip Neudeck’s silicon carbide integrated circuits don’t just work — they ran for over 60 days in simulated Venus-like conditions. On Earth, these chips can boost efficiency in wireless communication systems, help make drilling for oil safer, and enable more practical electric vehicles. 
      From developing harder chip materials to unlocking new planetary missions, Neudeck is proving that the future of electronics isn’t just about speed — it’s about survival.

      Hydrogen sensors that could go the distance on other worlds

      Gary Hunter helped develop a hydrogen sensor so advanced it’s being considered for a future mission to Titan, Saturn’s icy moon. These and a range of other sensors he’s helped developed have applications that go beyond space exploration, such as factory floors here on Earth.
      With new missions on the horizon and smarter sensors in development, Hunter is still pushing the boundaries of what NASA technology can do. Whether it’s Titan, the surface of Venus, or somewhere we haven’t dreamed of yet, this work could help shape the way to get there. 

      Advanced materials research to make travel safer

      Advanced materials, such as foams and composites, are key to unlocking the next generation of manufacturing. From space exploration to industry, Erik Weiser spent years contributing his expertise to the development of polymers, ceramics, metals, nanomaterials, and more. He is named on more than 20 patents. During this time, he provided his foam expertise to the Space Shuttle Columbia accident investigation, the Shuttle Discovery Return-to-Flight Investigation and numerous teams geared toward improving the safety of the shuttle.  
      Today, Weiser serves as director of the Facilities and Real Estate Division at NASA Headquarters, overseeing the foundation of NASA’s missions. Whether it’s advancing research or optimizing real estate across the agency, he’s helping launch the future, one facility at a time.

      Want to learn more about NASA’s game changing innovations? Visit the NASA Inventors Hall of Fame.
      Read More Share
      Details
      Last Updated May 09, 2025 Related Terms
      Technology Technology Transfer Technology Transfer & Spinoffs Explore More
      3 min read Key Portion of NASA’s Roman Space Telescope Clears Thermal Vacuum Test
      Article 2 days ago 4 min read NASA Enables SPHEREx Data Return Through Commercial Partnership
      Article 3 days ago 6 min read NASA Data Helps Map Tiny Plankton That Feed Giant Right Whales
      In the waters off New England, one of Earth’s rarest mammals swims slowly, mouth agape.…
      Article 4 days ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By European Space Agency
      Image: Part of the Italian island of Sardinia is featured in this image captured by the Copernicus Sentinel-2 mission. View the full article
    • By NASA
      Technicians move the Orion spacecraft for NASA’s Artemis II test flight out of the Neil A. Armstrong Operations and Checkout Building to the Multi-Payload Processing Facility at Kennedy Space Center in Florida on Saturday, May 3, 2025. NASA/Kim Shiflett Engineers, technicians, mission planners, and the four astronauts set to fly around the Moon next year on Artemis II, NASA’s first crewed Artemis mission, are rapidly progressing toward launch.

      At the agency’s Kennedy Space Center in Florida, teams are working around the clock to move into integration and final testing of all SLS (Space Launch System) and Orion spacecraft elements. Recently they completed two key milestones – connecting the SLS upper stage with the rest of the assembled rocket and moving Orion from its assembly facility to be fueled for flight.

      “We’re extremely focused on preparing for Artemis II, and the mission is nearly here,” said Lakiesha Hawkins, assistant deputy associate administrator for NASA’s Moon to Mars Program, who also will chair the mission management team during Artemis II. “This crewed test flight, which will send four humans around the Moon, will inform our future missions to the Moon and Mars.”
      Teams with NASA’s Exploration Ground Systems Program begin integrating the interim cryogenic propulsion stage to the SLS (Space Launch System) launch vehicle stage adapter on Wednesday, April 30, 2025, inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida. NASA/Isaac Watson On May 1, technicians successfully attached the interim cryogenic propulsion stage to the SLS rocket elements already poised atop mobile launcher 1, including its twin solid rocket boosters and core stage, inside the spaceport’s Vehicle Assembly Building (VAB). This portion of the rocket produces 24,750 pounds of thrust for Orion after the rest of the rocket has completed its job. Teams soon will move into a series of integrated tests to ensure all the rocket’s elements are communicating with each other and the Launch Control Center as expected. The tests include verifying interfaces and ensuring SLS systems work properly with the ground systems.

      Meanwhile, on May 3, Orion left its metaphorical nest, the Neil Armstrong Operations & Checkout Facility at Kennedy, where it was assembled and underwent initial testing. There the crew module was outfitted with thousands of parts including critical life support systems for flight and integrated with the service module and crew module adapter. Its next stop on the road to the launch pad is the Multi-Payload Processing Facility, where it will be carefully fueled with propellants, high pressure gases, coolant, and other fluids the spacecraft and its crew need to maneuver in space and carry out the mission.

      After fueling is complete, the four astronauts flying on the mission around the Moon and back over the course of approximately 10 days, will board the spacecraft in their Orion Crew Survival System spacesuits to test all the equipment interfaces they will need to operate during the mission. This will mark the first time NASA’s Reid Wiseman, Victor Glover, and Christina Koch, and CSA (Canadian Space Agency) astronaut Jeremy Hansen, will board their actual spacecraft while wearing their spacesuits. After the crewed testing is complete, technicians will move Orion to Kennedy’s Launch Abort System Facility, where the critical escape system will be added. From there, Orion will move to the VAB to be integrated with the fully assembled rocket.

      NASA also announced its second agreement with an international space agency to fly a CubeSat on the mission. The collaborations provide opportunities for other countries to work alongside NASA to integrate and fly technology and experiments as part of the agency’s Artemis campaign.

      While engineers at Kennedy integrate and test hardware with their eyes on final preparations for the mission, teams responsible for launching and flying the mission have been busy preparing for a variety of scenarios they could face.

      The launch team at Kennedy has completed more than 30 simulations across cryogenic propellant loading and terminal countdown scenarios. The crew has been taking part in simulations for mission scenarios, including with teams in mission control. In April, the crew and the flight control team at NASA’s Johnson Space Center in Houston simulated liftoff through a planned manual piloting test together for the first time. The crew also recently conducted long-duration fit checks for their spacesuits and seats, practicing several operations while under various suit pressures.
      NASA astronaut Christina Koch participates in a fit check April 18, 2025, in the spacesuit she will wear during Artemis II. NASA/Josh Valcarcel Teams are heading into a busy summer of mission preparations. While hardware checkouts and integration continue, in coming months the crew, flight controllers, and launch controllers will begin practicing their roles in the mission together as part of integrated simulations. In May, the crew will begin participating pre-launch operations and training for emergency scenarios during launch operations at Kennedy and observe a simulation by the launch control team of the terminal countdown portion of launch. In June, recovery teams will rehearse procedures they would use in the case of a pad or ascent abort off the coast of Florida, with launch and flight control teams supporting. The mission management team, responsible for reviewing mission status and risk assessments for issues that arise and making decisions about them, also will begin practicing their roles in simulations. Later this summer, the Orion stage adapter will arrive at the VAB from NASA’s Marshall Spaceflight Center in Huntsville, Alabama, and stacked on top of the rocket.

      NASA astronauts Reid Wiseman (foreground) and Victor Glover participate in a simulation of their Artemis II entry profile on March 13, 2025.NASA/Bill Stafford Through Artemis, NASA will send astronauts to explore the Moon for scientific discovery, economic benefits, and build the foundation for the first crewed missions to Mars.
      View the full article
  • Check out these Videos

×
×
  • Create New...