Jump to content

Meet NASA’s Twin Spacecraft Headed to the Ends of the Earth


NASA

Recommended Posts

  • Publishers

5 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

Arctic Ocean
Sunlight glints off patches of ice in the Chukchi Sea, a part of the Arctic Ocean. NASA’s PREFIRE mission to Earth’s polar regions will explore how a warming world will affect sea ice loss, ice sheet melt, and sea level rise.
NASA/Kathryn Hansen

Launching in spring 2024, the two small satellites of the agency’s PREFIRE mission will fill in missing data from Earth’s polar regions.

Two new miniature NASA satellites will start crisscrossing Earth’s atmosphere in a few months, detecting heat lost to space. Their observations from the planet’s most bone-chilling regions will help predict how our ice, seas, and weather will change in the face of global warming.

About the size of a shoebox, the cube satellites, or CubeSats, comprise a mission called PREFIRE, short for Polar Radiant Energy in the Far-InfraRed Experiment. Equipped with technology proven at Mars, their objective is to reveal the full spectrum of heat loss from Earth’s polar regions for the first time, making climate models more accurate.

PREFIRE has been jointly developed by NASA and the University of Wisconsin-Madison, with team members from the universities of Michigan and Colorado.

The mission starts with Earth’s energy budget. In a planetary balancing act, the amount of heat energy the planet receives from the Sun should ideally be offset by the amount it radiates out of the Earth system into space. The difference between incoming and outgoing energy determines Earth’s temperature and shapes our climate.

PREFIRE mission will send two CubeSats – depicted in an artist’s concept orbiting Earth
The PREFIRE mission will send two CubeSats – depicted in an artist’s concept orbiting Earth – into space to study how much heat the planet absorbs and emits from its polar regions. These measurements will inform climate and ice models.
NASA/JPL-Caltech

Polar regions play a key role in the process, acting like Earth’s radiator fins. The stirring of air and water, through weather and ocean currents, moves heat energy received in the tropics toward the poles, where it is emitted as thermal infrared radiation – the same type of energy you feel from a heat lamp. Some 60% of that energy flows out to space in far-infrared wavelengths that have never been systematically measured.

PREFIRE can close that gap. “We have the potential to discover some fundamental things about how our planet works,” said Brian Drouin, scientist and deputy principal investigator for the mission at NASA’s Jet Propulsion Laboratory in Southern California.

“In climate projections, a lot of the uncertainty comes in from what we don’t know about the North and South poles and how efficiently radiation is emitted into space,” he said. “The importance of that radiation wasn’t realized for much of the Space Age, but we know now and are aiming to measure it.”

Launching from New Zealand two weeks apart in May, each satellite will carry a thermal infrared spectrometer. The JPL-designed instruments include specially shaped mirrors and detectors for splitting and measuring infrared light. Similar technology is used by the Mars Climate Sounder on NASA’s Mars Reconnaissance Orbiter to explore the Red Planet’s atmosphere and weather.

Miniaturizing the instruments to fit on CubeSats was a challenge for the PREFIRE engineering team. They developed a scaled-down design optimized for the comparatively warm conditions of our own planet. Weighing less than 6 pounds (3 kilograms), the instruments make readings using a device called a thermocouple, similar to the sensors found in many household thermostats.

Ground Zero for Climate Change

To maximize coverage, the PREFIRE twins will orbit Earth along different paths, overlapping every few hours near the poles.

Since the 1970s, the Arctic has warmed at least three times faster than anywhere else on Earth. Winter sea ice there has shrunk by more than 15,900 square miles (41,200 square kilometers) per year, a loss of 2.6% per decade relative to the 1981-2010 average. A change is occurring on the opposite side of the planet, too: Antarctica’s ice sheets are losing mass at an average rate of about 150 billion tons per year.

The implications of these changes are far reaching. Fluctuations in sea ice shape polar ecosystems and influence the temperature as well as circulation of the ocean. Meltwater from mile-thick ice sheets in Greenland and Antarctica is responsible for about one-third of the rise in global mean sea level since 1993.

“If you change the polar regions, you also fundamentally change the weather around the world,” said Tristan L’Ecuyer, a professor at the University of Wisconsin-Madison and the mission’s principal investigator. “Extreme storms, flooding, coastal erosion – all of these things are influenced by what’s going on in the Arctic and Antarctic.”

To understand and project such changes, scientists use climate models that take into account many physical processes. Running the models multiple times (each time under slightly different conditions and assumptions) results in an ensemble of climate projections. Assumptions about uncertain parameters, such as how efficiently the poles emit thermal radiation, can significantly impact the projections.

PREFIRE will supply new data on a range of climate variables, including atmospheric temperature, surface properties, water vapor, and clouds. Ultimately, more information will yield a more accurate vision of a world in flux, said L’Ecuyer.

“As our climate models converge, we’ll start to really understand what the future’s going to look like in the Arctic and Antarctic,” he added.

News Media Contacts

Jane J. Lee / Andrew Wang
Jet Propulsion Laboratory, Pasadena, Calif.
818-354-0307 / 626-379-6874

Written by Sally Younger

2024-014

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      4 min read
      NASA’s Instruments Capture Sharpest Image of Earth’s Radiation Belt
      From Aug. 19-20, ESA’s (European Space Agency’s) Juice (Jupiter Icy Moons Explorer) mission made history with a daring lunar-Earth flyby and double gravity assist maneuver, a spaceflight first. As the spacecraft zipped past our Moon and home planet, Juice’s instruments came online for a dry run of what they’ll do when they reach Jupiter. During that time, two of NASA’s onboard instruments added another first to the list: capturing the sharpest-ever image of Earth’s radiation belts – swaths of charged particles trapped in Earth’s magnetic shield, or magnetosphere. 
      The Jovian Energetic Neutrals and Ions (JENI) instrument, built and managed by the Johns Hopkins Applied Physics Laboratory (APL) in Laurel, Maryland, on behalf of NASA, took the image as Juice soared away from Earth. What it captured is invisible to the human eye. Unlike traditional cameras that rely on light, JENI uses special sensors to capture energetic neutral atoms emitted by charged particles interacting with the extended atmospheric hydrogen gas surrounding Earth. The JENI instrument is the newest generation of this type of camera, building on the success of a similar instrument on NASA’s Cassini mission that revealed the magnetospheres of Saturn and Jupiter.
      An illustration showing the trajectory of ESA’s Juice spacecraft during its lunar-Earth gravity assist, featuring a high-resolution ENA image of the million-degree hot plasma halo encircling Earth captured by NASA’s JENI instrument. The white rings denote equatorial distance of 4 and 6 Earth radii. The inset showcases measurements taken by the NASA’s JENI and JoEE instruments during their passage through the radiation belts, revealing a highly structured energetic ion and electron environment. Credit: ESA/NASA/Johns Hopkins APL/Josh Diaz “As soon as we saw the crisp, new images, high fives went around the room,” said Matina Gkioulidou, deputy lead of JENI at APL. “It was clear we had captured the vast ring of hot plasma encircling Earth in unprecedented detail, an achievement that has sparked excitement for what is to come at Jupiter.”
      On Aug. 19, JENI and its companion particle instrument Jovian Energetic Electrons (JoEE) made the most of their brief 30-minute encounter with the Moon. As Juice zoomed just 465 miles (750 kilometers) above the lunar surface, the instruments gathered data on the space environment’s interaction with our nearest celestial companion. It’s an interaction scientists expect to see magnified at Jupiter’s moons, as the gas giant’s radiation-rich magnetosphere barrels over them. 
      On Aug. 20, Juice hurled into Earth’s magnetosphere, passing some 37,000 miles (60,000 km) above the Pacific Ocean, where the instruments got their first taste of the harsh environment that awaits at Jupiter. Racing through the magnetotail, JoEE and JENI encountered the dense, lower-energy plasma characteristic of this region before plunging into the heart of the radiation belts. There, the instruments measured the million-degree plasma encircling Earth to investigate the secrets of plasma heating that are known to fuel dramatic phenomena in planetary magnetospheres. 
      “I couldn’t have hoped for a better flyby,” said Pontus Brandt, principal investigator of JoEE and JENI at APL. “The richness of the data from our deep-dive through the magnetosphere is astounding. JENI’s image of the entire system we just flew through was the cherry on top. It’s a powerful combination we will exploit in the Jovian system.”
      Now after using the Moon’s and Earth’s gravity, Juice’s trajectory has been successfully adjusted for a future encounter with Venus in August 2025. That Venus flyby will serve as a gravitational slingshot, propelling Juice back toward Earth and priming it for two additional flybys in September 2026 and January 2029. Only then will the spacecraft, now boosted into high gear, make its grand arrival at Jupiter in July 2031.
      The Johns Hopkins Applied Physics Laboratory, in Laurel, Maryland, manages the JoEE and JENI instruments, which together make up the Particle Environment Package (PEP-Hi) instrument suite, for NASA on ESA’s Juice mission. The JoEE and JENI instruments are part of the Solar System Exploration Program, managed at NASA’s Marshall Space Flight Center for the agency’s Science Mission Directorate in Washington. 
      For more information on NASA’s involvement with ESA’s Juice mission, visit:
      https://science.nasa.gov/mission/juice/
      Facebook logo @NASA @NASA Instagram logo @NASA Linkedin logo @NASA Keep Exploring Discover More Topics From NASA
      Planetary Science



      Jupiter



      Asteroids



      Solar System


      View the full article
    • By NASA
      Space for Earth is an immersive experience that is part of the Earth Information Center. Credit: NASA Media is invited to preview and interview NASA leadership ahead of the opening of the Earth Information Center at the Smithsonian National Museum of Natural History at 10 a.m. EDT, Monday, Oct. 7.
      The 2,000-square-foot exhibit includes a 32-foot-long, 12-foot-high video wall displaying Earth science data visualizations and videos, an interpretive panel showing Earth’s connected systems, information on our changing world, and an overview of how NASA and the Smithsonian study our home planet. Visitors also can explore Earth observing missions, changes in Earth’s landscape over time, and how climate is expected to change regionally through multiple interactive experiences.
      The event will take place at the Smithsonian National Museum of Natural History 1000 Constitution Ave. NW, Washington from 10 a.m. to 3 p.m. Members of the media interested in attending should email Liz Vlock at: elizabeth.a.vlock@nasa.gov. NASA’s media accreditation policy is available online.
      Participants will be available for media interviews starting at the following times:
      10 a.m.: NASA Administrator Bill Nelson 10 a.m.: Kirk Johnson, Sant director, Museum of Natural History 10:30 a.m.: Karen St. Germain, division director, NASA Earth Sciences Division 10:30 a.m.: Julie Robinson, deputy director, NASA Earth Sciences Division   The Earth Information Center draws insights from across all NASA centers and its fellow partners – National Oceanic and Atmospheric Administration, U.S. Geological Survey, U.S. Department of Agriculture, U.S. Agency for International Development, Environmental Protection Agency, and Federal Emergency Management Administration. It allows viewers to see how our home planet is changing and gives decision makers information to develop the tools they need to mitigate, adapt, and respond to climate change.
      NASA’s Earth Information Center is a virtual and physical space designed to aid people to make informed decisions on Earth’s environment and climate. It provides easily accessible, readily usable, and scalable Earth information – enabling global understanding of our changing planet. 
      The expansion of the physical Earth Information Center at the Smithsonian National Museum of Natural History Museum makes it the second location in the Washington area. The first is located at NASA Headquarters in Washington at 300 E St., SW.
      To learn more about the Earth Information Center visit:
      https://earth.gov
      -end-
      Elizabeth Vlock
      Headquarters, Washington
      202-358-1600
      elizabeth.a.vlock@nasa.gov
      Share
      Details
      Last Updated Sep 30, 2024 LocationNASA Headquarters Related Terms
      Earth Science Division Earth Science NASA Headquarters Science Mission Directorate View the full article
    • By European Space Agency
      ESA has released its new Earth Observation Science Strategy, Earth Science in Action for Tomorrow’s World. Responding to the escalating threats from climate change, biodiversity loss, pollution and extreme weather and the need to take action to address these threats, this forward-looking strategy outlines a bold vision for Earth science through to 2040.
      View the full article
    • By Amazing Space
      Expert Reveals the Shocking Truth About Earth's New MOON!
    • By European Space Agency
      Image: This image captured by the Copernicus Sentinel-1 mission reveals the impact of severe flooding following heavy rain that hit Australia’s Northern Territory in March 2024. View the full article
  • Check out these Videos

×
×
  • Create New...