Jump to content

NASA’s Roman to Use Rare Events to Calculate Expansion Rate of Universe


NASA

Recommended Posts

  • Publishers
A field of galaxies on the black background of space. Some are blue and white, others glow yellow. In the middle of the field is a cluster of five yellowish spiral and elliptical galaxies that form a foreground galaxy cluster. There is one spiral galaxy just below the cluster that has a yellow-whiteish core and is surrounded by diffuse blue material. This galaxy is outlined by a white box, and lines extend from the box’s corners that leads to an enlarged view at the right. Four arrows point at yellow faint points of light that circle the central glow of the galaxy.
This Hubble Space Telescope image shows the powerful gravity of a galaxy embedded in a massive cluster of galaxies producing multiple images of a single distant supernova far behind it. The image shows the galaxy’s location within a large cluster of galaxies called MACS J1149.6+2223, located more than 5 billion light-years away. In the enlarged inset view of the galaxy, the arrows point to the multiple copies of an exploding star, named Supernova Refsdal, located 9.3 billion light-years from Earth.
Credit: NASA, ESA, and S. Rodney (JHU) and the FrontierSN team; T. Treu (UCLA), P. Kelly (UC Berkeley), and the GLASS team; J. Lotz (STScI) and the Frontier Fields team; M. Postman (STScI) and the CLASH team; and Z. Levay (STScI)

Astronomers investigating one of the most pressing mysteries of the cosmos – the rate at which the universe is expanding – are readying themselves to study this puzzle in a new way using NASA’s Nancy Grace Roman Space Telescope. Once it launches by May 2027, astronomers will mine Roman’s wide swaths of images for gravitationally lensed supernovae, which can be used to measure the expansion rate of the universe.

There are multiple independent ways astronomers can measure the present expansion rate of the universe, known as the Hubble constant.  Different techniques have yielded different values, referred to as the Hubble tension. Much of Roman’s cosmological investigations will be into elusive dark energy, which affects how the universe is expanding over time. One primary tool for these investigations is a fairly traditional method, which compares the intrinsic brightness of objects like type Ia supernovae to their perceived brightness to determine distances. Alternatively, astronomers could use Roman to examine gravitationally lensed supernovae. This method of exploring the Hubble constant is unique from traditional methods because it’s based on geometric methods, and not brightness.

“Roman is the ideal tool to let the study of gravitationally lensed supernovae take off,” said Lou Strolger of the Space Telescope Science Institute (STScI) in Baltimore, co-lead of the team preparing for Roman’s study of these objects. “They are rare, and very hard to find. We have had to get lucky in detecting a few of them early enough. Roman’s extensive field of view and repeated imaging in high resolution will help those chances.”

Using various observatories like NASA’s Hubble Space Telescope and James Webb Space Telescope, astronomers have discovered just eight gravitationally lensed supernovae in the universe. However, only two of those eight have been viable candidates to measure the Hubble constant due to the type of supernovae they are and the duration of their time-delayed imaging.

Gravitational lensing occurs when the light from an object like a stellar explosion, on its way to Earth, passes through a galaxy or galaxy cluster and gets deflected by the immense gravitational field. The light splits along different paths and forms multiple images of the supernova on the sky as we see it. Depending on the differences between the paths, the supernova images appear delayed by hours to months, or even years. Precisely measuring this difference in arrival times between the multiple images leads to a combination of distances that constrain the Hubble constant.

“Probing these distances in a fundamentally different way than more common methods, with the same observatory in this case, can help shed light on why various measurement techniques have yielded different results,” added Justin Pierel of STScI, Strolger’s co-lead on the program.

Graphic depiction of how the gravity from a cluster of galaxies bends the path of light from a distant supernova. At the top of the graphic is a Hubble image of a field of galaxies on a black background of space. At the bottom of the illustration is an enlarged view of a galaxy from the top image. Both the Hubble image at the top of the illustration and the enlarged inset image at the bottom of the graphic have lines running through them from below the bottom left corner of the respective image extended past the top right corner of each image. The lines extend from a model of the Roman space telescope at the bottom left across each image to a distant galaxy at the top. On each image, the lines represent the light paths from distant supernova in the galaxy at the top right are bent by the cluster’s gravity and redirected onto new paths.
This illustration, using Hubble Space Telescope images of Supernova Refsdal, shows how the gravity of massive galaxy cluster MACS J1149.6+2223 bends and focuses the light from the supernova behind it, resulting in multiple images of the exploding star. The upper graphic shows that when the star explodes, its light travels through space and encounters the foreground galaxy cluster. The light paths are bent by the cluster’s gravity and redirected onto new paths, several of which are pointed at Earth. Astronomers, therefore, see multiple images of the exploding star, each one corresponding to one of those altered light paths. Each image takes a different route through the cluster and arrives at a different time. In the lower graphic, the redirected light passes through a giant elliptical galaxy within the cluster. This galaxy adds another layer of lensing.
Credit: Illustration: NASA, ESA, A. Fields (STScI), and J. DePasquale (STScI). Science: NASA, ESA, and S. Rodney (JHU) and the FrontierSN team; T. Treu (UCLA), P. Kelly (UC Berkeley), and the GLASS team; J. Lotz (STScI) and the Frontier Fields team; M. Postman (STScI) and the CLASH team; and Z. Levay (STScI)

Finding the Needle in the Haystack

Roman’s extensive surveys will be able to map the universe much faster than Hubble can, with the telescope “seeing” more than 100 times the area of Hubble in a single image.

“Rather than gathering several pictures of trees, this new telescope will allow us to see the entire forest in a single snapshot,” Pierel explained.

In particular, the High Latitude Time Domain Survey will observe the same area of sky repeatedly, which will allow astronomers to study targets that change over time. This means there will be an extraordinary amount of data – over 5 billion pixels each time – to sift through in order to find these very rare events.

A team led by Strolger and Pierel at STScI is laying the groundwork for finding gravitationally lensed supernovae in Roman data through a project funded by NASA’s Research Opportunities in Space and Earth Science (ROSES) Nancy Grace Roman Space Telescope Research and Support Participation Opportunities program.

“Because these are rare, leveraging the full potential of gravitationally lensed supernovae depends on a high level of preparation,” said Pierel. “We want to make all the tools for finding these supernovae ready upfront so we don’t waste any time sifting through terabytes of data when it arrives.”

The project will be carried out by a team of researchers from various NASA centers and universities around the country.

The preparation will occur in several stages. The team will create data reduction pipelines designed to automatically detect gravitationally lensed supernovae in Roman imaging. To train those pipelines, the researchers will also create simulated imaging: 50,000 simulated lenses are needed, and there are only 10,000 actual lenses currently known.

The data reduction pipelines created by Strolger and Pierel’s team will complement pipelines being created to study dark energy with Type Ia supernovae.

“Roman is truly the first opportunity to create a gold-standard sample of gravitationally lensed supernovae,” concluded Strolger. “All our preparations now will produce all the components needed to ensure we can effectively leverage the enormous potential for cosmology.”

The Nancy Grace Roman Space Telescope is managed at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, with participation by NASA’s Jet Propulsion Laboratory and Caltech/IPAC in Southern California, the Space Telescope Science Institute in Baltimore, and a science team comprising scientists from various research institutions. The primary industrial partners are Ball Aerospace and Technologies Corporation in Boulder, Colorado; L3Harris Technologies in Melbourne, Florida; and Teledyne Scientific & Imaging in Thousand Oaks, California.

By Hannah Braun
Space Telescope Science Institute, Baltimore, Md.

​​Media Contact:
Claire Andreoli
NASA’s Goddard Space Flight Center, Greenbelt, Md.
301-286-1940

Christine Pulliam
Space Telescope Science Institute, Baltimore, Md.

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By Amazing Space
      Space Talk Podcast: Unlocking the Universe: Gravitational Waves Explained
    • By Amazing Space
      JAMES WEBB Telescope Reveals EARLY UNIVERSE Secrets!
    • By NASA
      This enormous piece of space hardware is NASA’s Nancy Grace Roman Space Telescope’s spacecraft bus, which will maneuver the observatory to its place in space and enable it to function while there. It is photographed here in the largest clean room at NASA’s Goddard Space Flight Center, where engineers are inspecting it upon delivery. The bus rests atop an aluminum ring that will temporarily protect its underside. The two copper-colored flaps are Roman’s Lower Instrument Sun Shade –– deployable panels designed to help shield the observatory from sunlight.NASA/Chris Gunn The spacecraft bus that will deliver NASA’s Nancy Grace Roman Space Telescope to its orbit and enable it to function once there is now complete after years of construction, installation, and testing.
      Now that the spacecraft is assembled, engineers will begin working to integrate the observatory’s other major components, including the science instruments and the telescope itself.
      “They call it a spacecraft bus for a reason — it gets the telescope to where it needs to be in space,” said Jackie Townsend, the Roman deputy project manager at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “But it’s really more like an RV because it has a whole assortment of functions that enable Roman to accomplish its scientific goals while out there too.”
      Those goals include surveying wide swaths of the universe to study things like: dark energy, a mysterious cosmic pressure thought to accelerate the universe’s expansion; dark matter, invisible matter seen only via its gravitational influence; and exoplanets, worlds beyond our solar system.
      The mission’s science wouldn’t be possible without a spacecraft to transport the telescope, point the observatory toward different cosmic targets, provide power, communicate with Earth, control and store instrument data, and regulate Roman’s temperature. Nearly 50 miles of electrical cabling are laced throughout the assembly to enable different parts of the observatory to communicate with each other.
      The spacecraft will also deploy several major elements that will be stowed for launch, including the solar panels, deployable aperture cover, lower instrument Sun shade, and high-gain antenna. It’s also responsible for collecting and beaming down data, which is no small task for a space observatory that will survey the cosmos like Roman will.
      “Roman will send back 1.4 terabytes of data per day, compared to about 50 to 60 gigabytes from the James Webb Space Telescope and three gigabytes from the Hubble Space Telescope,” said Jason Hylan, the Roman observatory manager at NASA Goddard. “Webb’s daily downlink is roughly comparable to 13 hours of YouTube video at the highest quality while Roman’s would amount to about 2 weeks.”
      This top-down view shows NASA’s Nancy Grace Roman Space Telescope’s spacecraft bus from another angle. It rests atop an aluminum ring that will not be part of the observatory and is surrounded by an enclosure used in testing to ensure electromagnetic interference will not affect the bus’s sensitive electronics. The bus is covered in gray bagging material to prevent contamination –– even tiny stray particles could affect its performance.NASA/Chris Gunn A Goddard Grand Slam
      This milestone is the culmination of eight years of spacecraft design work, building, and testing by hundreds of people at Goddard.
      “Goddard employees were the brains, designers, and executors. And they worked with vendors who supplied all the right parts,” Townsend said. “We leaned on generations of expertise in the spacecraft arena to work around cost and schedule challenges that arose from supply chain issues and the pandemic.”
      One time- and money-saving technique the team came up with was building a spacecraft mockup, called the structural verification unit. That allowed them to do two things at once: complete strength testing on the mockup, designed specifically for that purpose, while also assembling the actual spacecraft.
      The spacecraft’s clever layout also allowed the team to adapt to changing schedules. It’s designed to be modular, “more like Trivial Pursuit pie pieces than a nesting egg, where interior components are buried inside,” Townsend said. “That’s been a game-changer because you can’t always count on things arriving in the order you planned or working perfectly right away with no tweaks.” It also increased efficiency because people could work on different portions of the bus at the same time without interfering with each other.
      The slightly asymmetrical and hexagonal spacecraft bus is about 13 feet (4 meters) wide by 6.5 feet (2 meters) tall and weighs in at 8,400 pounds (3,800 kilograms).
      While it may look small in this photo, the spacecraft bus for NASA’s Nancy Grace Roman Space Telescope is 8 feet (2.5 meters) wide by 6.5 feet (2 meters) tall and weighs in at 8,400 pounds (3,800 kilograms). In this photo, it rests atop an aluminum ring that will not be part of the observatory. The bundles of wires on top are part of more than 50 miles of cabling laced throughout the assembly to enable different parts of the observatory to communicate with each other.NASA/Chris Gunn One reason it doesn’t weigh more is that some components have been partially hollowed out. If you could peel back some of the spacecraft’s panels, you’d find superthin metallic honeycomb sandwiched between two slim layers of metal. And many of the components, such as the antenna dish, are made of strong yet lightweight composite materials.
      When the spacecraft bus was fully assembled, engineers conducted a comprehensive performance test. Prior to this, each component had been tested individually, but just like with a sports team, the whole unit has to perform well together.
      “The spacecraft passed the test, and now we’re getting ready to install the payload –– Roman’s instruments and the telescope itself,” said Missie Vess, a spacecraft systems engineer for Roman at NASA Goddard. “Next year, we’ll test these systems together and begin integrating the final components of the observatory, including the deployable aperture cover, outer barrel assembly, and solar panels. Then we’ll finally have ourselves a complete observatory, on track for launch by May 2027.”
      To virtually tour an interactive version of the telescope, visit:
      https://roman.gsfc.nasa.gov/interactive
      The Nancy Grace Roman Space Telescope is managed at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, with participation by NASA’s Jet Propulsion Laboratory and Caltech/IPAC in Southern California, the Space Telescope Science Institute in Baltimore, and a science team comprising scientists from various research institutions. The primary industrial partners are BAE Systems, Inc in Boulder, Colorado; L3Harris Technologies in Rochester, New York; and Teledyne Scientific & Imaging in Thousand Oaks, California.
      By Ashley Balzer
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      ​​Media Contact:
      Claire Andreoli
      claire.andreoli@nasa.gov
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      301-286-1940
      Explore More
      2 min read Solar Panels for NASA’s Roman Space Telescope Pass Key Tests
      Article 3 weeks ago 6 min read Primary Instrument for Roman Space Telescope Arrives at NASA Goddard
      Article 1 month ago 6 min read How NASA’s Roman Space Telescope Will Illuminate Cosmic Dawn
      Article 2 months ago Share
      Details
      Last Updated Sep 17, 2024 EditorAshley BalzerContactAshley Balzerashley.m.balzer@nasa.govLocationGoddard Space Flight Center Related Terms
      Nancy Grace Roman Space Telescope Communicating and Navigating with Missions Dark Energy Dark Matter Exoplanets Goddard Space Flight Center Goddard Technology Space Communications Technology Technology The Universe View the full article
    • By NASA
      Hubble Space Telescope Home NASA’s Hubble Finds More… Missions Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts News Hubble News Hubble News Archive Social Media Media Resources Multimedia Multimedia Images Videos Sonifications Podcasts E-books Lithographs Fact Sheets Glossary Posters Hubble on the NASA App More Online Activities   4 Min Read NASA’s Hubble Finds More Black Holes than Expected in the Early Universe
      The Hubble Ultra Deep Field of nearly 10,000 galaxies is the deepest visible-light image of the cosmos. The image required 800 exposures taken over 400 Hubble orbits around Earth. The total amount of exposure time was 11.3 days, taken between Sept. 24, 2003 and Jan. 16, 2004. Credits:
      NASA, ESA, S. Beckwith (STScI) and the HUDF Team With the help of NASA’s Hubble Space Telescope, an international team of researchers led by scientists in the Department of Astronomy at Stockholm University has found more black holes in the early universe than has previously been reported. The new result can help scientists understand how supermassive black holes were created.
      Currently, scientists do not have a complete picture of how the first black holes formed not long after the big bang. It is known that supermassive black holes, that can weigh more than a billion suns, exist at the center of several galaxies less than a billion years after the big bang.
      “Many of these objects seem to be more massive than we originally thought they could be at such early times — either they formed very massive or they grew extremely quickly,” said Alice Young, a PhD student from Stockholm University and co-author of the study  published in The Astrophysical Journal Letters.
      This is a new image of the Hubble Ultra Deep Field. The first deep imaging of the field was done with Hubble in 2004. The same survey field was observed again by Hubble several years later, and was then reimaged in 2023. By comparing Hubble Wide Field Camera 3 near-infrared exposures taken in 2009, 2012, and 2023, astronomers found evidence for flickering supermassive black holes in the hearts of early galaxies. One example is seen as a bright object in the inset. Some supermassive black holes do not swallow surrounding material constantly, but in fits and bursts, making their brightness flicker. This can be detected by comparing Hubble Ultra Deep Field frames taken at different epochs. The survey found more black holes than predicted. NASA, ESA, Matthew Hayes (Stockholm University); Acknowledgment: Steven V.W. Beckwith (UC Berkeley), Garth Illingworth (UC Santa Cruz), Richard Ellis (UCL); Image Processing: Joseph DePasquale (STScI)
      Download this image

      Black holes play an important role in the lifecycle of all galaxies, but there are major uncertainties in our understanding of how galaxies evolve. In order to gain a complete picture of the link between galaxy and black hole evolution, the researchers used Hubble to survey how many black holes exist among a population of faint galaxies when the universe was just a few percent of its current age.
      Initial observations of the survey region were re-photographed by Hubble after several years. This allowed the team to measure variations in the brightness of galaxies. These variations are a telltale sign of black holes. The team identified more black holes than previously found by other methods.
      The new observational results suggest that some black holes likely formed by the collapse of massive, pristine stars during the first billion years of cosmic time. These types of stars can only exist at very early times in the universe, because later-generation stars are polluted by the remnants of stars that have already lived and died. Other alternatives for black hole formation include collapsing gas clouds, mergers of stars in massive clusters, and “primordial” black holes that formed (by physically speculative mechanisms) in the first few seconds after the big bang. With this new information about black hole formation, more accurate models of galaxy formation can be constructed.
      “The formation mechanism of early black holes is an important part of the puzzle of galaxy evolution,” said Matthew Hayes from the Department of Astronomy at Stockholm University and lead author of the study. “Together with models for how black holes grow, galaxy evolution calculations can now be placed on a more physically motivated footing, with an accurate scheme for how black holes came into existence from collapsing massive stars.”
      Image Before/After Astronomers are also making observations with NASA’s James Webb Space Telescope to search for galactic black holes that formed soon after the big bang, to understand how massive they were and where they were located.
      The Hubble Space Telescope has been operating for over three decades and continues to make ground-breaking discoveries that shape our fundamental understanding of the universe. Hubble is a project of international cooperation between NASA and ESA (European Space Agency). NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope and mission operations. Lockheed Martin Space, based in Denver, Colorado, also supports mission operations at Goddard. The Space Telescope Science Institute in Baltimore, Maryland, which is operated by the Association of Universities for Research in Astronomy, conducts Hubble science operations for NASA.
      Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contact:
      Claire Andreoli
      NASA’s Goddard Space Flight Center, Greenbelt, MD
      claire.andreoli@nasa.gov
      Ray Villard
      Space Telescope Science Institute, Baltimore, MD
      Science Contact:
      Matthew Hayes
      Stockholm University, Stockholm, Sweden
      Share








      Details
      Last Updated Sep 17, 2024 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms
      Astrophysics Astrophysics Division Black Holes Goddard Space Flight Center Hubble Space Telescope Missions The Universe Keep Exploring Discover More Topics From Hubble
      Hubble Space Telescope


      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


      Hubble Science Highlights



      Hubble Online Activities



      Hubble Focus: Dark Universe


      View the full article
    • By European Space Agency
      With the help of the NASA/ESA Hubble Space Telescope, an international team of researchers led by scientists in the Department of Astronomy at Stockholm University has found more black holes in the early Universe than has previously been reported. The new result can help scientists understand how supermassive black holes were created.
      View the full article
  • Check out these Videos

×
×
  • Create New...