Jump to content

NASA’s Fission Surface Power Project Energizes Lunar Exploration


NASA

Recommended Posts

  • Publishers

4 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

A concept image of the Fission Surface Power Project on the lunar surface. Earth and Mars can be seen in the background. The lunar surface is grey and rocky.
A concept image of NASA’s Fission Surface Power Project.
Credit: NASA

NASA is wrapping up the initial phase of its Fission Surface Power Project, which focused on developing concept designs for a small, electricity-generating nuclear fission reactor that could be used during a future demonstration on the Moon and to inform future designs for Mars.

NASA awarded three $5 million contracts in 2022, tasking each commercial partner with developing an initial design that included the reactor; its power conversion, heat rejection, and power management and distribution systems; estimated costs; and a development schedule that could pave the way for powering a sustained human presence on the lunar surface for at least 10 years.

“A demonstration of a nuclear power source on the Moon is required to show that it is a safe, clean, reliable option,” said Trudy Kortes, program director, Technology Demonstration Missions within NASA’s Space Technology Mission Directorate at NASA Headquarters in Washington. “The lunar night is challenging from a technical perspective, so having a source of power such as this nuclear reactor, which operates independent of the Sun, is an enabling option for long-term exploration and science efforts on the Moon.”

While solar power systems have limitations on the Moon, a nuclear reactor could be placed in permanently shadowed areas (where there may be water ice) or generate power continuously during lunar nights, which are 14-and-a-half Earth days long.

NASA designed the requirements for this initial reactor to be open and flexible to maintain the commercial partners’ ability to bring creative approaches for technical review.

“There was a healthy variety of approaches; they were all very unique from each other,” said Lindsay Kaldon, Fission Surface Power project manager at NASA’s Glenn Research Center in Cleveland. “We didn’t give them a lot of requirements on purpose because we wanted them to think outside the box.”

However, NASA did specify that the reactor should stay under six metric tons and be able to produce 40 kilowatts (kW) of electrical power, ensuring enough for demonstration purposes and additional power available for running lunar habitats, rovers, backup grids, or science experiments. In the U.S., 40 kW can, on average, provide electrical power for 33 households.

A concept image of the Fission Surface Power Project on the lunar surface. The lunar surface is grey and is filled with craters and rover tracks.
NASA plans a sustained presence on the Moon and eventually Mars. Safe, efficient, reliable energy will be key to future robotic and human exploration.
Credit: NASA

NASA also set a goal that the reactor should be capable of operating for a decade without human intervention, which is key to its success. Safety, especially concerning radiation dose and shielding, is another key driver for the design.

Beyond the set requirements, the partnerships envisioned how the reactor would be remotely powered on and controlled. They identified potential faults and considered different types of fuels and configurations. Having terrestrial nuclear companies paired with companies with expertise in space made for a wide range of ideas.

NASA plans to extend the three Phase 1 contracts to gather more information before Phase 2, when industry will be solicited to design the final reactor to demonstrate on the Moon. This additional knowledge will help the agency set the Phase 2 requirements, Kaldon says.

“We’re getting a lot of information from the three partners,” Kaldon said. “We’ll have to take some time to process it all and see what makes sense going into Phase 2 and levy the best out of Phase 1 to set requirements to design a lower-risk system moving forward.”

Open solicitation for Phase 2 is planned for 2025.

After Phase 2, the target date for delivering a reactor to the launch pad is in the early 2030s. On the Moon, the reactor will complete a one-year demonstration followed by nine operational years. If all goes well, the reactor design may be updated for potential use on Mars.

Beyond gearing up for Phase 2, NASA recently awarded Rolls Royce North American Technologies, Brayton Energy, and General Electric contracts to develop Brayton power converters.

Thermal power produced during nuclear fission must be converted to electricity before use. Brayton converters solve this by using differences in heat to rotate turbines within the converters. However, current Brayton converters waste a lot of heat, so NASA has challenged companies to make these engines more efficient.

The Technology Demonstration Missions program manages Fission Surface Power under NASA’s Space Technology Mission Directorate. 

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Curiosity Navigation Curiosity Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Mars Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions All Planets Mercury Venus Earth Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets 3 min read
      Sols 4222-4224: A Particularly Prickly Power Puzzle
      This image was taken by Mast Camera (Mastcam) onboard NASA’s Mars rover Curiosity on Sol 4219 (2024-06-19 02:22:26 UTC). Earth planning date: Friday, June 21, 2024
      All our patient waiting has been rewarded, as we were greeted with the news that our drill attempt of “Mammoth Lakes 2” was successful! You can see the drill hole in the image above, as well as the first place we attempted just to the left. The actual drilling is only the beginning – we want to see what it is we’ve drilled. We’re starting that process this weekend by using our laser spectrometer (LIBS) to check out the drill hole before delivering some of the drilled material to CheMin (the Chemistry & Mineralogy X-Ray Diffraction instrument) to do its own investigations.
      The next step in a drill campaign is usually to continue the analysis with SAM (the Sample Analysis at Mars instrument suite), which tends to be quite power hungry. As a result, we want to make sure we’re going into the next plan with enough power for that. That meant that even though we’ve got a lot of free time this weekend, with three sols and CheMin taking up only the first overnight, we needed to think carefully about how we used that free time. Sometimes, when the science teams deliver our plans, we’re overly optimistic. At times this optimism is rewarded, and we’re allowed to keep the extra science in the plan. Today we needed to strategize a bit more, and the midday science operations working group meeting (or SOWG, as it’s known) turned into a puzzle session, as we figured out what could move around and what we had to put aside for the time being.
      An unusual feature of this weekend’s plan was a series of short change-detection observations on “Walker Lake” and “Finch Lake,” targets we’ve looked at in past plans to see wind-driven movement of the Martian sand. These were peppered through the three sols of the plan, to see any changes during the course of a single sol. While these are relatively short observations – only a few minutes – we do have to wake the rover to take them, which eats into our power. Luckily, the science team had considered this, and classified the observations as high, middle, or low priority. This made it easy to take out the ones that were less important, to save a bit of power.
      Another power-saving strategy is considering carefully where observations go. A weekend plan almost always includes an “AM ENV Science Block” – dedicated time for morning observations of the environment and atmosphere. Usually, this block goes on the final sol of the plan, but we already had to wake up the morning of the first sol for CheMin to finish up its analysis. This meant we could move the morning ENV block to the first sol, and Curiosity got a bit more time to sleep in, at the end of the plan.
      Making changes like these meant not only that we were able to finish up the plan with enough power for Monday’s activities, but we were still able to fit in plenty of remote science. This included a number of mosaics from both Mastcam and ChemCam on past targets such as “Whitebark Pass” and “Quarry Peak.” We also had two new LIBS targets: “Broken Finger Peak” and “Shout of Relief Pass.” Aside from our morning block, ENV was able to sneak in a few more observations: a dust-devil movie, and a line-of-sight and tau to keep an eye on the changing dust levels in the atmosphere.
      Written by Alex Innanen, Atmospheric Scientist at York University
      Share








      Details
      Last Updated Jun 21, 2024 Related Terms
      Blogs Explore More
      2 min read A Bright New Abrasion
      Last week, Perseverance arrived at the long-awaited site of Bright Angel, named for being a…


      Article


      1 day ago
      6 min read Sols 4219-4221: It’s a Complex Morning…


      Article


      3 days ago
      2 min read Perseverance Finds Popcorn on Planet Mars
      After months of driving, Perseverance has finally arrived at ‘Bright Angel’, discovering oddly textured rock…


      Article


      3 days ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is no place for the faint-hearted. It’s dry, rocky, and bitter cold. The fourth planet from the Sun, Mars…


      All Mars Resources



      Rover Basics



      Mars Exploration Science Goals


      View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      A steel model of a hypersonic vehicle and sensor in front of a window in a wind tunnel labeled the 20 inch Mach 6 Tunnel. Vehicles that travel at hypersonic speeds fly faster than five times the speed of sound. NASA studies the fundamental science of hypersonics to understand it better and applies this understanding to enable point-to-point and space access hypersonic vehicles. These vehicles would use airbreathing engines, which utilize oxygen in the atmosphere. In the long term, NASA envisions reusable hypersonic vehicles with efficient engines for routine flight across the globe.
      Vision: Enable routine, reusable, airbreathing hypersonic flight 
      Mission: Advance core capabilities and critical technologies underpinning the mastery of hypersonic flight to support U.S. supremacy in hypersonics 
      Approach: Conduct fundamental and applied research to enable a broad spectrum of hypersonic systems and missions 
      Artist rendering of a high-speed point-to-point vehicle.NASA Langley In the coming decade, NASA envisions the development of enabling technologies for a first-generation reusable airbreathing vehicle capable of cruising at hypersonic speeds. This work supports potential emerging markets in high-speed flight.
      By 2050, NASA envisions the development of a next-generation reusable hypersonic vehicle that could serve as the first stage in a two-stage space access vehicle.
      Unique Hypersonics Facilities and Expertise

      NASA maintains unique facilities, laboratories, and subject matter experts who investigate fundamental and applied research areas to solve the challenges of hypersonic flight. The Hypersonic Technology project coordinates closely with partners in industry, academia, and other government agencies to leverage relevant data sets to validate computational models. These partners also utilize NASA expertise, facilities, and computational tools. Partnerships are critical to advancing the state of the art in hypersonic flight.

      Read More About the Hypersonic Technology Project Facebook logo @NASA@NASAAero@NASA_es @NASA@NASAAero@NASA_es Instagram logo @NASA@NASAAero@NASA_es Linkedin logo @NASA Explore More
      2 min read Hypersonics Technical Challenges
      Article 29 mins ago 2 min read Hypersonic Research Topics
      Article 30 mins ago 2 min read High-Speed Market Studies
      Article 3 days ago Keep Exploring Discover Related Topics
      Technology Transfer & Spinoffs
      Small Business Innovation Research (SBIR) / Small Business Technology Transfer (STTR)
      Manufacturing and Materials
      Why Go to Space
      Share
      Details
      Last Updated Jun 21, 2024 EditorJim BankeContactShannon Eichornshannon.eichorn@nasa.gov Related Terms
      Hypersonic Technology Advanced Air Vehicles Program View the full article
    • By NASA
      ASIA-AQ DC-8 aircraft flies over Bangkok, Thailand to monitor seasonal haze from fire smoke and urban pollution. Photo credit: Rafael Luis Méndez Peña. Tracking the spread of harmful air pollutants across large regions requires aircraft, satellites, and diverse team of scientists. NASA’s global interest in the threat of air pollution extends into Asia, where it works with partners on the Airborne and Satellite Investigation of Asian Air Quality (ASIA-AQ).  This international mission integrates satellite data and aircraft measurements with local air quality ground monitoring and modeling efforts across Asia.
      Orchestrating a mission of this scale requires complicated agreements between countries, the coordination of aircraft and scientific instrumentation, and the mobilization of scientists from across the globe. To make this possible, ARC’s Earth Science Project Office (ESPO) facilitated each phase of the campaign, from site preparation and aircraft deployment to sensitive data management and public outreach.
      “Successfully meeting the ASIA-AQ mission logistics requirements was an incredible effort in an uncertainty-filled environment and a very constrained schedule to execute and meet those requirements,” explains ASIA-AQ Project Manager Jhony Zavaleta. “Such effort drew on the years long experience on international shipping expertise, heavy equipment operations, networking and close coordination with international service providers and all of the U.S. embassies at each of our basing locations.”
      Map of planned ASIA-AQ operational regions. Yellow circles indicate the original areas of interest for flight sampling. The overlaid colormap shows annual average nitrogen dioxide (NO2) concentrations observed by the TROPOMI satellite with red colors indicating the most polluted locations. Understanding Air Quality Globally
      ASIA-AQ benefits our understanding of air quality and the factors controlling its daily variability by investigating the ways that air quality can be observed and quantified. The airborne measurements collected during the campaign are directly integrated with existing satellite observations of air quality, local air quality monitoring networks, other available ground assets, and models to provide a level of detail otherwise unavailable to advance understanding of regional air quality and improve future integration of satellite and ground monitoring information.
      ESPO’s Mission-Critical Contributions
      Facilitating collaboration between governmental agencies and the academic community by executing project plans, navigating bureaucratic hurdles, and consensus building. Mission planning for two NASA aircraft. AFRC DC-8 completed 16 science flights, totaling 125 flight hours. The LaRC GIII completed 35 science flights, totaling 157.7 flight hours. Enabling international fieldwork and workforce mobilization by coordinating travel, securing authorizations and documentation, and maintaining relationships with local research partners. Managing outreach to local governments and schools. ASIA-AQ team members showcased tools used for air quality science to elementary/middle/high school students. Recent news feature here. View of ASIA-AQ aircraft in Bangkok, Thailand. ESPO staff from left to right: Dan Chirica, Marilyn Vasques, Sam Kim, Jhony Zavaleta, and Andrian Liem. Aircraft from left to right: Korean Meteorological Agency/National Institute of Meteorological Sciences, NASA LaRC GIII, NSASA DC-8, (2) Hanseo University, Sunny Air (private aircraft contracted by Korean Meteorological Agency). Photo: Rafael Mendez Peña. The flying laboratory of NASA’s DC-8
      NASA flew its DC-8 aircraft, picture above, equipped with instrumentation to monitor the quality, source, and movement of harmful air pollutants. Scientists onboard used the space as a laboratory to analyze data in real-time and share it with a network of researchers who aim to tackle this global issue.
      “Bringing the DC-8 flying laboratory and US researchers to Asian countries not only advances atmospheric research but also fosters international scientific collaboration and education,” said ESPO Project Specialist Vidal Salazar. “Running a campaign like ASIA AQ also opens doors for shared knowledge and exposes local communities to cutting-edge research.”
      Fostering Partnerships Through Expertise and Goodwill
      International collaboration fostered through this campaign contributes to an ongoing dialogue about air pollution between Asian countries.
      “NASA’s continued scientific and educational activities around the world are fundamental to building relationships with partnering countries,” said ESPO Director Marilyn Vasques. “NASA’s willingness to share data and provide educational opportunities to locals creates goodwill worldwide.”
      The role of ESPO in identifying, strategizing, and executing on project plans across the globe created a path for multi-sectoral community engagement on air quality. These global efforts to improve air quality science directly inform efforts to save lives from this hazard that affects all.
      View the full article
    • By NASA
      3 min read
      Artemis, Architecture, and Lunar Science: SMD and ESDMD Associate Administrators visits Tokyo
      June 18, 2024
      At NASA we always say that exploration enables science, and science enables exploration. During a recent, quick trip to Tokyo, Japan with our Associate Administrator for the Exploration Systems Development Mission Directorate (ESDMD), Cathy Koerner, I had an opportunity to share this message with our partners at the Japanese Aerospace Exploration Agency (JAXA).
      We explore for several reasons but primarily to benefit humanity. How exactly does exploration benefit humanity? By accepting audacious challenges like retuning to the Moon and venturing on to Mars, we inspire and motivate current and future generations of scientists, engineers, problem solvers, and communicators to contribute to our mission and other national priorities. By conducting scientific investigations in deep space, on the Moon, and on Mars, we enhance our understanding of the universe and our place in it. And finally, what we achieve when we explore, how it’s accomplished, and who participates benefits international partnerships and global cooperation that are essential for enhancing the quality of life for all.
      NASA Associate Administrator for the Science Mission Directorate, Dr. Nicky Fox, and Associate Administrator for the Exploration systems Development Mission Directorate, Cathy Koerner, meet with the Japanese Aerospace Exploration Agency (JAXA) in Tokyo, Japan on June 11, 2024. Credits: NASA In addition to bi-lateral meetings with our JAXA partners, Cathy and I co-presented at the International Space Exploration Symposium where I shared how every NASA Science division has a stake in Artemis. Cathy provided updates on the Orion spacecraft, SLS rocket, Gateway, human landing systems, and advanced spacesuits, and I talked about all of the incredible science we will conduct along the way. The Artemis campaign is a series of increasingly complex missions that provide ever-growing capabilities for scientific exploration of the Moon. From geology to solar, biological, and fundamental physics phenomena, exploration teaches about the earliest solar system environment: whether and how the bombardments of nascent worlds influenced the emergence of life, how the Earth and Moon formed and evolved, and how volatiles (like water) and other potential resources were distributed and transported throughout the solar system.
      Together with our partners like JAXA, NASA is working towards establishing infrastructure for long-term exploration in lunar orbit and on the surface. For example, on Artemis III, JAXA will provide the Lunar Dielectric Analyzer instrument, which once installed near the lunar South Pole, will help collect valuable scientific data about the lunar environment, it’s interior, and how to sustain a long-duration human presence on the Moon. In April, the U.S. and Japan were proud to make a historic announcement for cooperation on the Moon. Japan will design, develop, and operate a pressurized rover for crewed and uncrewed exploration on the Moon. NASA will launch and deliver the rover, and provide two opportunities for Japanese astronauts to travel to the lunar surface. This historic agreement was highlighted by President Biden and Prime Minister Kishida and is an example of the strong relationship between the United States and Japan. The enclosed and pressurized rover will be able to accommodate two astronauts on the lunar surface for 30 days, and will have a lifespan of about 10 years, enabling it to be used for multiple missions. It will enable longer-duration expeditions, so that astronauts can conduct more moonwalks and perform more science in geographically diverse areas near the lunar South Pole.
      Artemis is different than anything humanity has ever done before. The Artemis campaign will bring the world along for this historic journey, forever changing humanity’s perspective of our place in the universe. This is the start of a lunar ecosystem, where we’ll do more science than we can dream of, together.
      Explore More
      3 min read NASA’s Hubble Restarts Science in New Pointing Mode


      Article


      4 days ago
      2 min read Hubble Observes a Cosmic Fossil


      Article


      4 days ago
      5 min read Associate Administrator for the Science Mission Directorate Visits Partners in Spain, United Kingdom, Greece, and France


      Article


      1 week ago
      View the full article
    • By NASA
      The Lunar Reconnaissance Orbiter (LRO) and the Lunar Crater Observation and Sensing Satellite (LCROSS) launched together from Cape Canaveral Air Force, now Space Force, Station on June 18, 2009, atop an Atlas V launch vehicle. The primary mission of the LRO, managed by NASA’s Goddard Space Flight Center in Greenbelt, Maryland, involved imaging the entire Moon’s surface to create a 3-D map with ~50-centimeter resolution to aid in the planning of future robotic and crewed missions. In addition, LRO would map the polar regions and search for the presence of water ice. Although its primary mission intended to last only one year, it continues to operate after 15 years in lunar orbit. The LCROSS, managed by NASA’s Ames Research Center in California’s Silicon Valley, planned to further investigate the presence of water ice in permanently shaded areas of the Moon’s polar regions. The two components of LCROSS, the Centaur upper stage of the launch vehicle and the Shepherding Satellite, planned to deliberately crash into the Moon. Instruments on Earth and aboard LRO and the LCROSS Shepherding Satellite would observe the resulting plumes and analyze them for the presence of water.

      Left: Lunar Reconnaissance Orbiter (LRO), top, silver, and Lunar Crater Observation and Sensing Satellite (LCROSS), bottom, gold, spacecraft during placement inside the launch shroud. Right: Launch of LRO and LCROSS on an Atlas V rocket.
      The LRO spacecraft carries seven scientific instruments:
      the Cosmic Ray Telescope for the Effects of Radiation (CRaTER) to characterize the lunar radiation environment; the Diviner Lunar Radiometer Experiment (DLRE) to identify areas cold enough to trap ice; the Lyman-Alpha Mapping Project (LMAP) to search for ice in the lunar polar regions; the Lunar Exploration Neutron Detector (LEND) to create a map of hydrogen distribution and to determine the neutron component of the lunar radiation environment; the Lunar Orbiter Laser Altimeter (LOLA) to measure slopes and roughness of potential landing sites; the Lunar Reconnaissance Orbiter Camera (LROC) consisting of two-narrow angle and one wide-angle camera to take high-resolution images of the lunar surface; and the Mini Radio Frequency (Mini-RF) experiment, an advanced radar system to image the polar regions and search for water ice.
      Left: Illustration of the Lunar Reconnaissance Orbiter and its scientific instruments. Right: Illustration of the Lunar Crater Observation and Sensing Satellite and its scientific instruments on panel at left.
      The LCROSS Shepherding Satellite carried nine instruments – five cameras (one visible, two near-infrared, and two mid-infrared); three spectrometers (one visible and two near-infrared); and a photometer. They monitored the plume sent up by the impact of the Centaur upper stage.

      Left: Illustration of the Lunar Reconnaissance Orbiter in lunar orbit. Right: Illustration of the Lunar Crater Observation and Sensing Satellite’s Shepherding Satellite at left and Centaur upper stage at right prior to lunar impact.
      On June 23, 2009, after a four-and-a-half-day journey from Earth, LRO entered an elliptical polar orbit around the Moon. Over the next four days, four engine burns refined the spacecraft’s orbit and engineers on the ground began commissioning its instruments. The LROC returned its first image of the Moon on June 30 of an area near the Mare Nubium. On Sept. 15, 2009, LRO began its primary one-year mission to map the lunar surface from its science orbit 31 miles above the Moon.  
      On Oct. 9, 2009, first the Centaur upper stage followed five minutes later by the LCROSS Shepherding Satellite crashed into the Moon’s Cabeus Crater near the lunar south pole. Although the impacts created smaller plumes than anticipated, instruments detected signs of water in the ejected debris.
      In September 2010, LRO completed its primary mapping mission and began an extended science mission around the Moon. On Dec. 17, NASA released the most detailed topographic map covering more than 98 percent of the Moon’s surface based on data from LRO’s LOLA instrument. The map continues to be updated as new data are received from the spacecraft. On March 15, 2011, LRO had made available more than 192 terabytes of data from its primary mission to the NASA Planetary Data System, or PDS, to make the information available to researchers, students, media, and the general public. LRO  continues to deliver data to the PDS, having generated the largest volume of data from a NASA planetary science mission ever.

      Left: First high-resolution image of the Moon taken by Lunar Reconnaissance Orbiter (LRO). Middle: Mosaic of LRO images of the Moon’s near side. Right: Mosaic of LRO images of the Moon’s far side.

      Left: Mosaic of Lunar Reconnaissance Orbiter (LRO) images of the lunar north pole. Right: Mosaic of LRO images of the lunar south pole.
      The LCROSS data showed that the lunar soil within shadowy craters is rich in useful materials, such as hydrogen gas, ammonia, and methane, which could be used to produce fuel for space missions. Large amounts of light metals, such as sodium, mercury, and silver, were discovered. The data revealed that there is perhaps as much as hundreds of millions of tons of frozen water on the Moon, enough to make it an effective oasis for future explorers.
      Thanks to its unique vantage point in a low altitude lunar orbit, LRO’s camera has taken remarkably detailed images of all six Apollo landing sites. The detail is such that not only can the Lunar Module (LM) descent stages be clearly identified, but disturbances of the lunar soil by the astronauts’ boots, the shadows of the American flag are visible at five of the landing sites, and the Lunar Rovers from the last three missions are even visible. The scientific instruments, and in at least three of the landing sites, the U.S. flag left by the astronauts can be discerned. The flag at the Apollo 11 site cannot be seen because it most likely was blown over by the exhaust of the LM’s ascent stage engine when the astronauts lifted off. In addition to the Apollo landing sites, LRO has also imaged crash and soft-landing sites of other American, Soviet, Chinese, Indian, and Israeli spacecraft, including craters left by the deliberate impacts of Apollo S-IVB upper stages. It also imaged a Korean satellite in lunar orbit as the two flew within a few miles of each other at high speed. LRO also turned its camera Earthward to catch stunning Earthrise views, one image with Mars in the background, and the Moon’s shadow on the Earth during the total solar eclipse on April 8, 2024.

      Lunar Reconnaissance Orbiter images of the Apollo 11, left, 12, and 14 landing sites.

      Lunar Reconnaissance Orbiter images of the Apollo 15, left, 16, and 17 landing sites.

      Left: Lunar Reconnaissance Orbiter (LRO) image of Luna 17 that landed on the Moon on Nov. 17, 1970, and the tracks of the Lunokhod 1 rover that it deployed. Middle: LRO image of the Chang’e 4 lander and Yutu 2 rover that landed on the Moon’s far side on Jan. 3, 2019. Right: LRO image of the Chandrayaan 3 lander taken four days after it landed on the Moon on Aug. 23, 2023.

      Left: Lunar Reconnaissance Orbiter (LRO) image of Odysseus that landed on the Moon on Feb. 22, 2024. Middle: LRO image taken on March 5, 2024, of the Danuri lunar orbiting satellite as the two passed within 3 miles of each other at a relative velocity of 7,200 miles per hour. Right: LRO image of the Chang’e 6 lander on the Moon’s farside, taken on June 7, 2024.

      Left: Lunar Reconnaissance Orbiter (LRO) image of Earthrise over Compton Crater taken Oct. 12, 2015. Middle: LRO image of Earth and Mars taken Oct. 2, 2014. Right: LRO image of the total solar eclipse taken on April 8, 2024.
      The LRO mission continues with the spacecraft returning images and data from its instruments. LRO has enough fuel on board to operate until 2027. The spacecraft can support new robotic lunar activities and the knowledge from the mission will help aid in the return of humans to the lunar surface. 
      View the full article
  • Check out these Videos

×
×
  • Create New...