Jump to content

Hubble Studies a Sparkling Galaxy Pair


NASA

Recommended Posts

  • Publishers

1 min read

Hubble Studies a Sparkling Galaxy Pair

The lower half of the image is filled with a large spiral galaxy that has a bright white bar of stars at its center. To its upper left, a smaller galaxy shines with bright blue stars. It has an irregular shape, appearing almost like a vertical bar of stars. The rest of the image shows black space interspersed with more distant galaxies and stars.
This new NASA Hubble Space Telescope image features a pair of interacting galaxies called, NGC 5410 and UGC 8932/PGC 49896.
NASA/ESA/D. Bowen (Princeton University)/Processing: Gladys Kober (NASA/Catholic University of America)

A pair of small, interacting galaxies shine in this new NASA Hubble Space Telescope image. The larger of the two galaxies is named NGC 5410 and was discovered in 1787 by British astronomer William Herschel. It spans 80,000 light-years across and has a bright white bar of stars at its center. It is also a spiral galaxy with a medium-sized nucleus and spread-out arms. NGC 5410 contains many young, blue star clusters, especially along its arms.

The smaller of the two galaxies is called UGC 8932 or PGC 49896 and has a diameter of 60,000 light-years. It has a bright blue bar of stars at its core, indicating that it contains younger stars. Its shape is irregular, likely due to distortions from NGC 5410’s gravitational pull. 

The pair lies 180 million light-years away in the Canes Venatici constellation and can be seen from the northern hemisphere. Between the two galaxies lies a stream of stars, almost like a bridge, caused by their interaction.

Hubble imaged this galaxy in 2023 to examine if interactions between dwarf galaxies create reservoirs of particles that fuel star formation. 

LEARN MORE:

Media Contact:

Claire Andreoli
NASA’s Goddard Space Flight CenterGreenbelt, MD
claire.andreoli@nasa.gov

Share

Details

Last Updated
Jan 26, 2024
Editor
Andrea Gianopoulos
Location
Goddard Space Flight Center

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      ESA/Hubble & NASA, C. Kilpatrick This NASA/ESA Hubble Space Telescope image treats viewers to a wonderfully detailed snapshot of the spiral galaxy NGC 3430 that lies 100 million light-years from Earth in the constellation Leo Minor. Several other galaxies, located relatively nearby to this one, are just beyond the frame of this image; one is close enough that gravitational interaction is driving some star formation in NGC 3430 — visible as bright-blue patches near to but outside of the galaxy’s main spiral structure. This fine example of a galactic spiral holds a bright core from which a pinwheel array of arms appears to radiate outward. Dark dust lanes and bright star-forming regions help define these spiral arms.
      NGC 3430’s distinct shape may be one reason why astronomer Edwin Hubble used to it to help define his classification of galaxies. Namesake of the Hubble Space Telescope, Edwin Hubble authored a paper in 1926 that outlined the classification of some four hundred galaxies by their appearance — as either spiral, barred spiral, lenticular, elliptical, or irregular. This straightforward typology proved extremely influential, and the detailed schemes astronomers use today are still based on Edwin Hubble’s work. NGC 3430 itself is a spiral lacking a central bar with open, clearly defined arms — classified today as an SAc galaxy.
      Image credit: ESA/Hubble & NASA, C. Kilpatrick
      View the full article
    • By NASA
      2 min read
      Hubble Images a Classic Spiral 
      This NASA/ESA Hubble Space Telescope image features the majestic spiral galaxy NGC 3430. ESA/Hubble & NASA, C. Kilpatrick This NASA/ESA Hubble Space Telescope image treats viewers to a wonderfully detailed snapshot of the spiral galaxy NGC 3430 that lies 100 million light-years from Earth in the constellation Leo Minor. Several other galaxies, located relatively nearby to this one, are just beyond the frame of this image; one is close enough that gravitational interaction is driving some star formation in NGC 3430 — visible as bright-blue patches near to but outside of the galaxy’s main spiral structure. This fine example of a galactic spiral holds a bright core from which a pinwheel array of arms appears to radiate outward. Dark dust lanes and bright star-forming regions help define these spiral arms.
      NGC 3430’s distinct shape may be one reason why astronomer Edwin Hubble used to it to help define his classification of galaxies. Namesake of the Hubble Space Telescope, Edwin Hubble authored a paper in 1926 that outlined the classification of some four hundred galaxies by their appearance — as either spiral, barred spiral, lenticular, elliptical, or irregular. This straightforward typology proved extremely influential, and the detailed schemes astronomers use today are still based on Edwin Hubble’s work. NGC 3430 itself is a spiral lacking a central bar with open, clearly defined arms — classified today as an SAc galaxy.
      Astronomer Edwin Hubble pioneered the study of galaxies based simply on their appearance. This “Field Guide” outlines Hubble’s classification scheme using images from his namesake telescope. Credit: NASA’s Goddard Space Flight Center; Lead Producer: Miranda Chabot; Lead Writer: Andrea Gianopoulos
      Download this image

      Explore More

      Hubble’s Galaxies


      Astronomer Edwin Hubble

      Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contact:
      Claire Andreoli
      NASA’s Goddard Space Flight Center, Greenbelt, MD
      claire.andreoli@nasa.gov
      Share








      Details
      Last Updated Jul 25, 2024 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms
      Astrophysics Astrophysics Division Galaxies Goddard Space Flight Center Hubble Space Telescope Missions Spiral Galaxies The Universe Keep Exploring Discover More Topics From Hubble
      Hubble Space Telescope


      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


      Hubble’s Galaxies



      Hubble Design



      Hubble Science Highlights


      View the full article
    • By NASA
      NASA and its international partners are sending scientific investigations to the International Space Station on Northrop Grumman’s 21st commercial resupply services mission. Flying aboard the company’s Cygnus spacecraft are tests of water recovery technology and a process to produce stem cells in microgravity, studies of the effects of spaceflight on microorganism DNA and liver tissue growth, and live science demonstrations for students. The mission is scheduled to launch from Cape Canaveral Space Force Station in Florida by early August.
      Read more about some of the research making the journey to the orbiting laboratory:
      Testing materials for packed systems
      Packed bed reactors are systems that use materials such as pellets or beads “packed” inside a structure to increase contact between different phases of fluids, such as liquid and gas. These reactors are used for various applications including water recovery, thermal management, and fuel cells. Scientists previously tested the performance in space of glass beads, Teflon beads, a platinum catalyst, and other packing materials. Packed Bed Reactor Experiment: Water Recovery Series evaluates gravity’s effects on eight additional test articles.

      Results could help optimize the design and operation of packed bed reactors for water filtration and other systems in microgravity and on the Moon and Mars. Insights from the investigation also could lead to improvements in this technology for applications on Earth such as water purification and heating and cooling systems.
      Hardware for the packed bed water recovery reactor experiment. The packing media is visible in the long clear tube.NASA Giving science a whirl
      STEMonstrations Screaming Balloon uses a balloon, a penny, and a hexagonal nut (the kind used to secure a bolt) for a NASA STEMonstration performed and recorded by astronauts on the space station. The penny and the nut are whirled separately inside an inflated balloon to compare the sounds they make. Each STEMonstration illustrates a different scientific concept, such as centripetal force, and includes resources to help teachers further explore the topics with their students.
      NASA astronauts Matthew Dominick and Jeanette Epps prepare for a STEMonstration on the International Space Station.NASA More, better stem cells
      In-Space Expansion of Hematopoietic Stem Cells for Clinical Application (InSPA-StemCellEX-H1) continues testing a technology to produce human hematopoietic stem cells (HSCs) in space. HSCs give rise to blood and immune cells and are used in therapies for patients with certain blood diseases, autoimmune disorders, and cancers.

      The investigation uses a system called BioServe In-space Cell Expansion Platform, or BICEP, which is designed to expand HSCs three hundredfold without the need to change or add new growth media, according to Louis Stodieck, principal investigator at the University of Colorado Boulder. “BICEP affords a streamlined operation to harvest and cryopreserve cells for return to Earth and delivery to a designated medical provider and patient,” said Stodieck.

      Someone in the United States is diagnosed with a blood cancer such as leukemia about every three minutes. Treating these patients with transplanted stem cells requires a donor-recipient match and long-term repopulation of transplanted stem cells. This investigation demonstrates whether expanding stem cells in microgravity could generate far more continuously renewing stem cells.

      “Our work eventually could lead to large-scale production facilities, with donor cells launched into orbit and cellular therapies returned to Earth,” said Stodieck.
       
      NASA astronaut Frank Rubio works on the first test of methods for expanding stem cells in space, StemCellEX-H Pathfinder. The InSPA-StemCellEX-H1 investigation continues this work.NASA DNA repair in space
      Rotifer-B2, an ESA (European Space Agency) investigation, explores how spaceflight affects DNA repair mechanisms in a microscopic bdelloid rotifer, Adineta vaga. These tiny but complex organisms are known for their ability to withstand harsh conditions, including radiation doses 100 times higher than human cells can survive. The organisms are dried, exposed to high radiation levels on Earth, and rehydrated and cultured in an incubator on the station.

      “Previous research indicates that rotifers repair their DNA in space with the same efficiency as on Earth, but that research provided only genetic data,” said Boris Hespeels, co-investigator, of Belgium’s Laboratory of Evolutionary Genetics and Ecology. “This experiment will provide the first visual proof of survival and reproduction during spaceflight,” said Hespeels

      Results could provide insights into how spaceflight affects the rotifer’s ability to repair sections of damaged DNA in a microgravity environment, and could improve the general understanding of DNA damage and repair mechanisms for applications on Earth.
      A culture chamber for the Rotifer-B2 investigation aboard the International Space Station.NASA Growing liver tissue
      Maturation of Vascularized Liver Tissue Construct studies the development in space of bioprinted liver tissue constructs that contain blood vessels. Constructs are tissue samples grown outside the body using bioengineering techniques. Scientists expect the microgravity environment to allow improved cellular distribution throughout tissue constructs.

      “We are especially keen on accelerating the development of vascular networks,” said James Yoo, principal investigator, at the Wake Forest Institute of Regenerative Medicine. “The experimental data from microgravity will provide valuable insights that could enhance the biomanufacturing of vascularized tissues to serve as building blocks to engineer functional organs for transplantation.”
      Image A shows a vascularized tissue construct with interconnected channels, and image B shows a bioprinted human liver tissue construct fabricated with a digital light projection printer. Image C shows the tissue construct connected to a perfusion system, a pump that moves fluid through it.Wake Forest Institute for Regenerative Medicine. This mission also delivers plants for the APEX-09 investigation, which examines plant responses to stressful environments and could inform the design of bio-regenerative support systems on future space missions.
      Melissa Gaskill
      International Space Station Research Communications Team
      NASA’s Johnson Space Center
      Download high-resolution photos and videos of the research mentioned in this article.
      Search this database of scientific experiments to learn more about those mentioned in this article.
      Keep Exploring Discover More Topics From NASA
      Latest News from Space Station Research
      Commercial Resupply
      Station Science 101: Biology and Biotechnology
      Space Station Technology Demonstration
      View the full article
    • By NASA
      The barred spiral galaxy NGC 6872 is interacting with a smaller galaxy to the upper left. The smaller galaxy has likely stripped gas from NGC 6872 to feed the supermassive black hole in its center.X-ray: NASA/CXC/SAO; Optical: NASA/ESA/STScI; Image Processing: NASA/CXC/SAO/J. Schmidt, L. Frattare, and J. Major To commemorate the 25th anniversary of NASA’s Chandra X-ray Observatory launch, the Chandra team released this never-seen-before image of NGC 6872, a spiral galaxy in the Pavo (Peacock) constellation, on July 22, 2024. This image and 24 others, which all include data from Chandra, demonstrate how X-ray astronomy explores all corners of the universe.
      NGC 6872 is 522,000 light-years across, making it more than five times the size of the Milky Way galaxy; in 2013, astronomers from the United States, Chile, and Brazil found it to be the largest-known spiral galaxy, based on archival data from NASA’s Galaxy Evolution Explorer. This record was surpassed by NGC 262, a galaxy that measures 1.3 million light-years in diameter.
      See more photos released for this celebration.
      Image credit: X-ray: NASA/CXC/SAO; Optical: NASA/ESA/STScI; Image Processing: NASA/CXC/SAO/J. Schmidt, L. Frattare, and J. Major
      View the full article
    • By NASA
      6 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      The Arctic is captured in this 2010 visualization using data from NASA’s Aqua satellite. A new study quantifies how climate-related processes, including the melting of ice sheets and glaciers, are driving polar motion. Another study looks at how polar meltwater is speeding the lengthening of Earth’s day.NASA’s Scientific Visualization Studio Researchers used more than 120 years of data to decipher how melting ice, dwindling groundwater, and rising seas are nudging the planet’s spin axis and lengthening days.
      Days on Earth are growing slightly longer, and that change is accelerating. The reason is connected to the same mechanisms that also have caused the planet’s axis to meander by about 30 feet (10 meters) in the past 120 years. The findings come from two recent NASA-funded studies focused on how the climate-related redistribution of ice and water has affected Earth’s rotation.
      This redistribution occurs when ice sheets and glaciers melt more than they grow from snowfall and when aquifers lose more groundwater than precipitation replenishes. These resulting shifts in mass cause the planet to wobble as it spins and its axis to shift location — a phenomenon called polar motion. They also cause Earth’s rotation to slow, measured by the lengthening of the day. Both have been recorded since 1900.
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      The animation, exaggerated for clarity, illustrates how Earth’s rotation wobbles as the location of its spin axis, shown in orange, moves away from its geographic axis, which is shown in blue and represents the imaginary line between the planet’s geographic North and South poles.NASA’s Scientific Visualization Studio Analyzing polar motion across 12 decades, scientists attributed nearly all of the periodic oscillations in the axis’ position to changes in groundwater, ice sheets, glaciers, and sea levels. According to a paper published recently in Nature Geoscience, the mass variations during the 20th century mostly resulted from natural climate cycles.
      The same researchers teamed on a subsequent study that focused on day length. They found that, since 2000, days have been getting longer by about 1.33 milliseconds per 100 years, a faster pace than at any point in the prior century. The cause: the accelerated melting of glaciers and the Antarctic and Greenland ice sheets due to human-caused greenhouse emissions. Their results were published July 15 in Proceedings of the National Academy of Sciences.
      “The common thread between the two papers is that climate-related changes on Earth’s surface, whether human-caused or not, are strong drivers of the changes we’re seeing in the planet’s rotation,” said Surendra Adhikari, a co-author of both papers and a geophysicist at NASA’s Jet Propulsion Laboratory in Southern California.
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      The location of Earth’s spin axis moved about 30 feet (10 meters) between 1900 and 2023, as shown in this animation. A recent study found that about 90% of the periodic oscillations in polar motion could be explained by melting ice sheets and glaciers, diminishing groundwater, and sea level rise.NASA/JPL-Caltech Decades of Polar Motion
      In the earliest days, scientists tracked polar motion by measuring the apparent movement of stars. They later switched to very long baseline interferometry, which analyzes radio signals from quasars, or satellite laser ranging, which points lasers at satellites.
      Researchers have long surmised that polar motion results from a combination of processes in Earth’s interior and at the surface. Less clear was how much each process shifts the axis and what kind of effect each exerts — whether cyclical movements that repeat in periods from weeks to decades, or sustained drift over the course of centuries or millennia.
      For their paper, researchers used machine-learning algorithms to dissect the 120-year record. They found that 90% of recurring fluctuations between 1900 and 2018 could be explained by changes in groundwater, ice sheets, glaciers, and sea level. The remainder mostly resulted from Earth’s interior dynamics, like the wobble from the tilt of the inner core with respect to the bulk of the planet.
      The patterns of polar motion linked to surface mass shifts repeated a few times about every 25 years during the 20th century, suggesting to the researchers that they were largely due to natural climate variations. Past papers have drawn connections between more recent polar motion and human activities, including one authored by Adhikari that attributed a sudden eastward drift of the axis (starting around 2000) to faster melting of the Greenland and Antarctic ice sheets and groundwater depletion in Eurasia.
      That research focused on the past two decades, during which groundwater and ice mass loss as well as sea level rise — all measured via satellites — have had strong connections to human-caused climate change.
      “It’s true to a certain degree” that human activities factor into polar motion, said Mostafa Kiani Shahvandi, lead author of both papers and a doctoral student at the Swiss university ETH Zurich. “But there are natural modes in the climate system that have the main effect on polar motion oscillations.”
      Longer Days
      For the second paper, the authors used satellite observations of mass change from the GRACE mission (short for Gravity Recovery and Climate Experiment) and its follow-on GRACE-FO, as well as previous mass-balance studies that analyzed the contributions of changes in groundwater, ice sheets, and glaciers to sea level rise in the 20th century to reconstruct changes in the length of days due to those factors from 1900 to 2018.
      Scientists have known through historical eclipse records that length of day has been growing for millennia. While almost imperceptible to humans, the lag must be accounted for because many modern technologies, including GPS, rely on precise timekeeping.
      In recent decades, the faster melting of ice sheets has shifted mass from the poles toward the equatorial ocean. This flattening causes Earth to decelerate and the day to lengthen, similar to when an ice skater lowers and spreads their arms to slow a spin.
      The authors noticed an uptick just after 2000 in how fast the day was lengthening, a change closely correlated with independent observations of the flattening. For the period from 2000 to 2018, the rate of length-of-day increase due to movement of ice and groundwater was 1.33 milliseconds per century — faster than at any period in the prior 100 years, when it varied from 0.3 to 1.0 milliseconds per century.
      The lengthening due to ice and groundwater changes could decelerate by 2100 under a climate scenario of severely reduced emissions, the researchers note. (Even if emissions were to stop today, previously released gases — particularly carbon dioxide — would linger for decades longer.)
      If emissions continue to rise, lengthening of day from climate change could reach as high as 2.62 milliseconds per century, overtaking the effect of the Moon’s pull on tides, which has been increasing Earth’s length of day by 2.4 milliseconds per century, on average. Called lunar tidal friction, the effect has been the primary cause of Earth’s day-length increase for billions for years.
      “In barely 100 years, human beings have altered the climate system to such a degree that we’re seeing the impact on the very way the planet spins,” Adhikari said.
      News Media Contacts
      Andrew Wang / Jane J. Lee
      Jet Propulsion Laboratory, Pasadena, Calif.
      626-379-6874 / 818-354-0307
      andrew.wang@jpl.nasa.gov / jane.j.lee@jpl.nasa.gov
      2024-101
      Share
      Details
      Last Updated Jul 19, 2024 Related Terms
      Earth Science Earth Earth Science Division Earth's Moon GRACE (Gravity Recovery And Climate Experiment) GRACE-FO (Gravity Recovery and Climate Experiment Follow-on) Jet Propulsion Laboratory Explore More
      3 min read New Evidence Adds to Findings Hinting at Network of Caves on Moon
      An international team of scientists using data from NASA’s LRO (Lunar Reconnaissance Orbiter) has discovered…
      Article 22 hours ago 8 min read The Earth Observer Editor’s Corner: Summer 2024
      NASA’s third EOS mission—AURA—marked 20 years in orbit on July 15, with two of its…
      Article 23 hours ago 3 min read The Earth Observer’s 35th Anniversary
      Welcome to a new era for The Earth Observer newsletter! Our 35th anniversary also marks the official…
      Article 23 hours ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
  • Check out these Videos

×
×
  • Create New...