Members Can Post Anonymously On This Site
After Three Years on Mars, NASA’s Ingenuity Helicopter Mission Ends
-
Similar Topics
-
By NASA
A host of scientific investigations await the crew of NASA’s SpaceX Crew-11 mission during their long-duration expedition aboard the International Space Station. NASA astronauts Zena Cardman and Mike Fincke, and JAXA (Japan Aerospace Exploration Agency) astronaut Kimiya Yui, are set to study plant cell division and microgravity’s effects on bacteria-killing viruses, as well as perform experiments to produce a higher volume of human stem cells and generate on-demand nutrients.
Here are details on some of the research scheduled during the Crew-11 mission:
Making more stem cells
Cultures of stem cells grown in 2D on Earth, left, and as 3D spheres in simulated microgravity on Earth.BioServe A stem cell investigation called StemCellEx-IP1 evaluates using microgravity to produce large numbers of induced pluripotent stem cells. Made by reprogramming skin or blood cells, these stem cells can transform into any type of cell in the body and are used in regenerative medicine therapies for many diseases. However, producing enough cells on the ground is a challenge.
Researchers plan to use the microgravity environment aboard the space station to demonstrate whether generating 1,000 times more cells is possible and whether these cells are of higher quality and better for clinical use than those made on Earth. If proven, this could significantly improve future patient outcomes.
“This type of stem cell research is a chance to find treatments and maybe even cures for diseases that currently have none,” said Tobias Niederwieser of BioServe Space Technologies, which developed the investigation. “This represents an incredible potential to make life here on Earth better for all of us. We can take skin or blood cells from a patient, convert them into stem cells, and produce custom cell-therapy with little risk for rejection, as they are the person’s own cells.”
Alternative to antibiotics
Genes in Space-12 student investigators Isabella Chuang, left, and Julia Gross, middle, with mentor Kayleigh Ingersoll Omdahl.Genes in Space Genes in Space is a series of competitions in which students in grades 7 through 12 design DNA experiments that are flown to the space station. Genes in Space-12 examines the effects of microgravity on interactions between certain bacteria and bacteriophages, which are viruses that infect and kill bacteria. Bacteriophages already are used to treat bacterial infections on Earth.
“Boeing and miniPCR bio co-founded this competition to bring real-world scientific experiences to the classroom and promote molecular biology investigations on the space station,” said Scott Copeland of Boeing, and co-founder of Genes in Space. “This
investigation could establish a foundation for using these viruses to treat bacterial infections in space, potentially decreasing the dependence on antibiotics.”
“Previous studies indicate that bacteria may display increased growth rates and virulence in space, while the antibiotics used to combat them may be less effective,” said Dr. Ally Huang, staff scientist at miniPCR bio. “Phages produced in space could have profound implications for human health, microbial control, and the sustainability of long-duration remote missions. Phage therapy tools also could revolutionize how we manage bacterial infections and microbial ecosystems on Earth.”
Edible organisms
A purple, pre-incubation BioNutrients-3 bag, left, and a pink bag, right, which has completed incubation, on a purple and pink board used for comparison.NASA Some vitamins and nutrients in foods and supplements lose their potency during prolonged storage, and insufficient intake of even a single nutrient can lead to serious diseases, such as a vitamin C deficiency, causing scurvy. The BioNutrients-3 experiment builds on previous investigations looking at ways to produce on-demand nutrients in space using genetically engineered organisms that remain viable for years. These include yogurt and a yeast-based beverage made from yeast strains previously tested aboard station, as well as a new, engineered co-culture that produces multiple nutrients in one sample bag.
“BioNutrients-3 includes multiple food safety features, including pasteurization to kill microorganisms in the sample and a demonstration of the feasibility of using a sensor called E-Nose that simulates an ultra-sensitive nose to detect pathogens,” said Kevin Sims, project manager at NASA’s Ames Research Center in California’s Silicon Valley.
Another food safety feature is a food-grade pH indicator to track bacterial growth.
“These pH indicators help the crew visualize the progress of the yogurt and kefir samples,” Sims said. “As the organisms grow, they generate lactic acid, which lowers the pH and turns the indicator pink.”
The research also features an investigation of yogurt passage, which seeds new cultures using a bit of yogurt from a finished bag, much like maintaining a sourdough bread starter. This method could sustain a culture over multiple generations, eliminating concerns about yogurt’s shelf life during a mission to the Moon or Mars while reducing launch mass.
Understanding cell division
Cells of green algae dividing.University of Toyama The JAXA Plant Cell Division investigation examines how microgravity affects cell division in green algae and a strain of cultured tobacco cells. Cell division is a fundamental element of plant growth, but few studies have examined it in microgravity.
“The tobacco cells divide frequently, making the process easy to observe,” said Junya Kirima of JAXA. “We are excited to reveal the effects of the space environment on plant cell division and look forward to performing time-lapse live imaging of it aboard the space station.”
Understanding this process could support the development of better methods for growing plants for food in space, including on the Moon and Mars. This investigation also could provide insight to help make plant production systems on Earth more efficient.
For nearly 25 years, people have lived and worked continuously aboard the International Space Station, advancing scientific knowledge and conducting critical research for the benefit of humanity and our home planet. Space station research supports the future of human spaceflight as NASA looks toward deep space missions to the Moon under the Artemis campaign and in preparation for future human missions to Mars, as well as expanding commercial opportunities in low Earth orbit and beyond.
Learn more about the International Space Station at:
https://www.nasa.gov/station
Keep Exploring Discover More Topics From NASA
Latest News from Space Station Research
Space Station Research and Technology
Humans In Space
Station Benefits for Humanity
View the full article
-
By NASA
Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions Mars Home 3 min read
Curiosity Blog, Sols 4595-4596: Just Another Beautiful Day on Mars
NASA’s Mars rover Curiosity acquired this image using its Left Navigation Camera on July 9, 2025 — Sol 4594, or Martian day 4,594 of the Mars Science Laboratory mission — at 11:03:48 UTC. NASA/JPL-Caltech Written by Ashley Stroupe, Mission Operations Engineer at NASA’s Jet Propulsion Laboratory
Earth planning date: Wednesday, July 9, 2025
In today’s plan, we have a little bit of everything. With it being winter still, we are taking advantage of the ability to let the rover sleep in, doing most of the activities in the afternoon when it is warmer and we need less heating. As the Systems Engineer (Engineering Uplink Lead) today, I sequenced the needed heating and some other engineering housekeeping activities.
We start off with an extensive remote science block with Mastcam imaging of a nearby trough to look for potential sand activity. There is color imaging of a displaced block, “Ouro,” near a circular depression — could this be a small crater? Mastcam also takes a look at a ridge “Volcán Peña Blanca” to look at the sedimentary structures, which may provide insights into its formation. ChemCam LIBS and Mastcam team up to look at the “Los Andes” target, which is the dark face of a nearby piece of exposed bedrock. ChemCam RMI and Mastcam check out a distant small outcrop to examine the geometry of the layers. We also throw in environmental observations, a Mastcam solar Tau and a Navcam line-of-site looking at dust in the atmosphere. After a nap, Curiosity will be doing some contact science activities on “Cataratas del Jardín” and “Rio Ivirizu” bedrock targets. Looking at two nearby targets for variability can help us understand the local geology. Cataratas del Jardín gets a brushing to clear away the dust before both targets are examined by MAHLI and APXS. Fortunately for the Arm Rover Planner, both of these targets are fairly flat and easy to reach. Before going to sleep for the night, Curiosity will stow the arm to be ready for driving on the next sol.On the second sol, there is more remote science. ChemCam LIBS and Mastcam will examine “Torotoro,” another piece of layered bedrock. ChemCam RMI will take a mosaic of “Paniri,” which is an interesting incision in the rock that is filled with another material. There are also environmental observations, a Navcam dust devil survey and a suprahorizon movie. After another nap, Curiosity is getting on the road. We’re heading southwest (direction shown in the image) about 50 meters (about 164 feet), but we need to sneak between sandy pits and skirt around some terrain that we can’t see behind. The terrain here provides pretty nice driving, though, without a lot of big boulders, steep slopes, or pointy rocks that can poke holes in our wheels. After the standard post-drive imaging for our next plan, there are some Navcam observations to look for clouds and our normal look under the rover with MARDI before Curiosity goes to sleep for the night.
For more Curiosity blog posts, visit MSL Mission Updates
Learn more about Curiosity’s science instruments
Share
Details
Last Updated Jul 15, 2025 Related Terms
Blogs Explore More
4 min read Curiosity Blog, Sols 4593-4594: Three Layers and a Lot of Structure at Volcán Peña Blanca
Article
4 days ago
3 min read Continuing the Quest for Clays
Article
7 days ago
2 min read Curiosity Blog, Sols 4589–4592: Setting up to explore Volcán Peña Blanca
Article
1 week ago
Keep Exploring Discover More Topics From NASA
Mars
Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…
All Mars Resources
Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…
Rover Basics
Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…
Mars Exploration: Science Goals
The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…
View the full article
-
By European Space Agency
After 20 days in space, ESA project astronaut Sławosz Uznański-Wiśniewski and his Axiom Mission 4 (Ax-4) crewmates returned safely to Earth today, 15 July 2025.
View the full article
-
By NASA
NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute/Alex Parker This image, taken by NASA’s New Horizons spacecraft on July 14, 2015, is the most accurate natural color image of Pluto. This natural-color image results from refined calibration of data gathered by New Horizons’ color Multispectral Visible Imaging Camera (MVIC). The processing creates images that would approximate the colors that the human eye would perceive, bringing them closer to “true color” than the images released near the encounter. This single color MVIC scan includes no data from other New Horizons imagers or instruments added. The striking features on Pluto are clearly visible, including the bright expanse of Pluto’s icy, nitrogen-and-methane rich “heart,” Sputnik Planitia.
Image credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute/Alex Parker
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.