Jump to content

40 Years Ago: President Reagan Directs NASA to Build a Space Station


NASA

Recommended Posts

  • Publishers

On Jan. 25, 1984, President Ronald W. Reagan directed NASA to build a permanently inhabited Earth orbiting space station within a decade. The President’s announcement turned years of NASA studies into a real program. As originally envisioned, the modular space station would use the space shuttle for assembly and serve as a microgravity research laboratory and observation platform, a servicing station for satellites, and a staging ground for exploration missions. The President urged NASA to invite its international partners to participate in the program. The complexity and cost of such an outpost resulted in multiple redesigns, with the initial Space Station Freedom ultimately evolving into the International Space Station. On-orbit assembly began in 1998, with permanent human habitation beginning two years later.

Wernher von Braun demonstrates a model of his wheel-shaped space station in 1956 Illustration of one concept of a space base as proposed by the Space Task Group in 1969 The Skylab space station, photographed by the third and final crew after its departure in 1974
Left: Wernher von Braun demonstrates a model of his wheel-shaped space station in 1956. Middle: Illustration of one concept of a space base as proposed by the Space Task Group in 1969. Right: The Skylab space station, photographed by the third and final crew after its departure in 1974.

As early as the 1950s, American space pioneer Wernher von Braun already had ideas for large orbiting space stations. He envisioned a wheel-shaped facility, slowly rotating to provide artificial gravity to its several thousand occupants. While such an orbital outpost exceeded available technologies for the foreseeable future, shortly after its founding in 1958, NASA began considering more modest space stations. With President John F. Kennedy’s 1961 pronouncement of a Moon landing as a national goal, plans for space stations took a back seat until after NASA achieved that objective. The Space Task Group (STG) that President Richard M. Nixon commissioned in 1969 to assess post-Apollo space objectives proposed an Earth-orbiting space station for the mid-1970s followed later by a much larger space base among several other ambitious projects. Economic realities of the time precluded such lofty goals; President Nixon approved the space shuttle in 1972, the only STG-recommended project to receive funding. Approval of an American space station awaited a later president. In the meantime, the highly successful experimental Skylab space station, based on Apollo hardware, housed three successive crews of three astronauts each, for 28, 59, and 84 days, in 1973 and 1974.

President Ronald W. Reagan during his 1984 State of the Union address to Congress Space Station Power Tower reference configuration (1984)
Left: President Ronald W. Reagan during his 1984 State of the Union address to Congress. Right: Space Station Power Tower reference configuration (1984).

During his Jan. 25, 1984, State of the Union address to a joint session of Congress, President Reagan directed NASA to develop a “permanently manned space station and to do it within a decade.” His comments reflected his view of American pre-eminence in space, but also explicitly stated that the United States would invite other nations to join in the project. President Reagan spelled out the benefits to be derived from such an orbiting platform:

Our progress in space—taking giant steps for all mankind—is a tribute to American teamwork and excellence. Our finest minds in government, industry, and academia have all pulled together. And we can be proud to say: We are first; we are the best; and we are so because we’re free.  America has always been greatest when we dared to be great. We can reach for greatness again. We can follow our dreams to distant stars, living and working in space for peaceful, economic, and scientific gain. … A space station will permit quantum leaps in our research in science, communications, in metals, and in lifesaving medicines which could be manufactured only in space. We want our friends to help us meet these challenges and share in their benefits. NASA will invite other countries to participate so we can strengthen peace, build prosperity, and expand freedom for all who share our goals.

In response to President Reagan’s direction, NASA Administrator James M. Beggs said, “The space program is alive and well, and we have a new initiative. … The space station will give us a permanent presence in low Earth orbit … and will be the cornerstone of our activities in space through the end of the century and beyond.” He added that the President’s initiatives, “are the right ones for the right time in our history.” In the optimism that followed President Reagan’s announcement, NASA laid out an ambitious plan for a space station composed of three separate orbital platforms to conduct microgravity research as well as Earth and celestial observations, to serve as a transportation and servicing node for space vehicles and satellites, and to stage missions for deep-space exploration. NASA signed agreements with the European Space Agency (ESA) and Japan’s National Space Development Agency (NASDA), now the Japan Aerospace Exploration Agency (JAXA), to provide their own research modules. Canada agreed to provide a robotic servicing system. In April 1985, NASA established a Space Station Program Office at the Johnson Space Center in Houston. Assessments of the original “Dual Keel” design determined that it was overly complex to build and cost estimates for the ambitious space station continued to rise. Over the next several years, engineers and managers redesigned the facility and simplified it to a single-truss configuration with the pressurized modules clustered near the core and the solar arrays for power generation at the ends of the truss. In July 1988, President Reagan announced that the orbital facility would be called Space Station Freedom, and two months later the Unites States, Japan, Canada and nine ESA member states signed an Inter-Governmental Agreement (IGA) for its construction and utilization. The redesigned facility would focus on microgravity research.

Model of the Space Station showing the proposed dual keel configuration (1985) Illustration of Space Station Freedom by Alan Chinchar (1991) Russian space station Mir photographed from Space Shuttle Discovery during the STS-91 mission (1998)
Left: Model of the Space Station showing the proposed dual keel configuration (1985). Middle: Illustration of Space Station Freedom by Alan Chinchar (1991). Right: Russian space station Mir photographed from Space Shuttle Discovery during the STS-91 mission (1998).

Space Station Freedom underwent several more redesigns to keep it cost-effective. In the meantime, the Soviet Union operated its Mir space station beginning with the launch of its first module in 1986. Over the years, the Soviets added several elements to increase the facility’s research and habitation capabilities. With the collapse of the Soviet Union in 1991, the future of Mir and its planned Mir-2 successor faced uncertainty in the new cash-strapped Russia. To take advantage of its extensive experience with operating space stations and keeping crews on orbit for up to a year, in 1993 President William J. “Bill” Clinton invited Russia to join the space station program as a full partner, essentially adding modules planned for Mir-2 to U.S., European, Japanese, and Canadian elements from Space Station Freedom. The new outpost would be called the International Space Station. In preparation for space station operations, between 1995 and 1998, seven American astronauts joined Russian cosmonauts as long-duration residents aboard Mir, with space shuttles providing transportation and resupply logistics. On Jan. 29, 1998, representatives from the United States, Russia, Japan, Canada and 11 participating ESA countries met at the U.S. State Department in Washington, D.C., and signed an updated IGA on Space Station Cooperation. The new IGA established the overall cooperative framework for the design, development, operation, and utilization of the space station and addressed several legal topics, including civil and criminal jurisdiction, intellectual property, and the operational responsibilities of the partners. 

Signatories of the 1998 Intergovernmental Agreement visit the Space Station Processing Facility at NASA’s Kennedy Space Center in Florida, and pose in front of the Unity Node 1 module being prepared for launch Zarya, left, and Unity, the first two modules of the nascent space station The Expedition 1 crew of Yuri P. Gidzenko of the Russian Space Agency (RSA), now Roscosmos, William M. Shepherd of NASA, and Sergei K. Krikalev of RSA
Left: Signatories of the 1998 Intergovernmental Agreement visit the Space Station Processing Facility at NASA’s Kennedy Space Center in Florida, and pose in front of the Unity Node 1 module being prepared for launch. Middle: Zarya, left, and Unity, the first two modules of the nascent space station. Right: The Expedition 1 crew of Yuri P. Gidzenko of the Russian Space Agency (RSA), now Roscosmos, William M. Shepherd of NASA, and Sergei K. Krikalev of RSA.

Ten months after the signing of the 1998 IGA, on-orbit construction of the space station began during the STS-88 mission, with the joining of the first two elements, the Zarya and Unity modules. The first expedition crew of NASA astronaut William M. Shepherd and Russian Space Agency, now Roscosmos, cosmonauts Yuri P. Gidzenko and Sergei K. Krikalev arrived to take up residence aboard the station on Nov. 2, 2000. More than 23 years later, multinational crews continue to live and work aboard a much enlarged and permanently inhabited space station, a unique microgravity laboratory for conducting research in a wide variety of scientific disciplines and a testbed for future human exploration programs.

The International Space Station as it appeared in 2021
The International Space Station as it appeared in 2021.

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Boeing’s Starliner spacecraft docked to the Harmony module of the International Space Station on the company’s Orbital Flight Test-2 mission (Credits: NASA) NASA and Boeing will discuss Starliner’s mission and departure from the International Space Station as part of the agency’s Boeing Crew Flight Test in a pre-departure media teleconference at 12 p.m. EDT Tuesday, June 18.
      NASA, Boeing, and station management teams will evaluate mission requirements and weather conditions at available landing locations in the southwestern U.S. before committing to the spacecraft’s departure from the orbiting laboratory.
      Participants in the news conference include:
      Steve Stich, manager, NASA’s Commercial Crew Program Dana Weigel, manager, NASA’s International Space Station Program Mike Lammers, flight director, NASA’s Johnson Space Center in Houston Mark Nappi, vice president and program manager, Commercial Crew Program, Boeing Media interested in participating must contact the NASA Johnson newsroom no later than 10 a.m., June 18, at 281-483-5111 or jsccommu@mail.nasa.gov. To ask questions, media must dial into the teleconference no later than 15 minutes before the start of the event.
      Audio of the teleconference will stream live on NASA’s website at:
      https://nasa.gov/nasatv
      As part of NASA’s Commercial Crew Program, NASA astronauts Butch Wilmore and Suni Williams lifted off at 10:52 a.m., June 5, on a United Launch Alliance Atlas V rocket from Space Launch Complex-41 at Cape Canaveral Space Force Station in Florida on an end-to-end test of the Starliner system. The crew docked to the forward-facing port of the station’s Harmony module at 1:34 p.m., June 6.
      For NASA’s blog and more information about the mission, visit:
      https://www.nasa.gov/commercialcrew
      -end-
      Josh Finch / Jimi Russell / Claire O’Shea
      Headquarters, Washington
      202-358-1100
      joshua.a.finch@nasa.gov / james.j.russell@nasa.gov / claire.a.o’shea@nasa.gov
      Courtney Beasley / Leah Cheshier
      Johnson Space Center, Houston
      281-483-5111
      courtney.m.beasley@nasa.gov / leah.d.cheshier@nasa.gov
      View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      High school and collegiate student teams gathered just north of NASA’s Marshall Space Flight Center in Huntsville, Alabama, to participate in the agency’s annual Student Launch competition April 13. Credits: NASA/Charles Beason Over 1,000 students from across the U.S. and Puerto Rico launched high-powered, amateur rockets on April 13, just north of NASA’s Marshall Space Flight Center in Huntsville, Alabama, as part of the agency’s annual Student Launch competition.
      Teams of middle school, high school, college, and university students were tasked to design, build, and launch a rocket and scientific payload to an altitude between 4,000 and 6,000 feet, while making a successful landing and executing a scientific or engineering payload mission.
      “These bright students rise to a nine-month challenge that tests their skills in engineering, design, and teamwork,” said Kevin McGhaw, director of NASA’s Office of STEM Engagement Southeast Region. “They are the Artemis Generation, the future scientists, engineers, and innovators who will lead us into the future of space exploration.”
      NASA announced the University of Notre Dame is the overall winner of the agency’s 2024 Student Launch challenge, followed by Iowa State University, and the University of North Carolina at Charlotte. A complete list challenge winners can be found on the agency’s student launch web page.
      Each year NASA implements a new payload challenge to reflect relevant missions. This year’s payload challenge is inspired by the Artemis missions, which seek to land the first woman and first person of color on the Moon.
      The complete list of award winners are as follows:
      2024 Overall Winners
      First place: University of Notre Dame, Indiana Second place: Iowa State University, Ames Third place: University of North Carolina at Charlotte 3D Printing Award:
      College Level:
      First place: University of Tennessee Chattanooga Middle/High School Level:
      First place: First Baptist Church of Manchester, Manchester, Connecticut Altitude Award
      College Level:
      First place: Iowa State University, Ames Middle/High School Level:
      First place: Morris County 4-H, Califon, New Jersey Best-Looking Rocket Award:
      College Level:
      First place: New York University, Brooklyn, New York Middle/High School Level:
      First place: Notre Dame Academy High School, Los Angeles American Institute of Aeronautics and Astronautics Reusable Launch Vehicle Innovative Payload Award:
      College Level:
      First place: University of Colorado Boulder Second place: Vanderbilt University, Nashville, Tennessee Third place: Carnegie Mellon, Pittsburgh, Pennsylvania Judge’s Choice Award:
      Middle/High School Level:
      First place: Cedar Falls High School, Cedar Falls, Iowa Second place: Young Engineers in Action, LaPalma, California Third place: First Baptist Church of Manchester, Manchester, Connecticut Project Review Award:
      College Level:
      First place: University of Florida, Gainesville AIAA Reusable Launch Vehicle Award:
      College Level:
      First place: University of Florida, Gainesville Second place: University of North Carolina at Charlotte Third place: University of Notre Dame, Indiana AIAA Rookie Award:
      College Level:
      First place: University of Colorado Boulder Safety Award:
      College Level:
      First place: University of Notre Dame, Indiana Second place: University of Florida, Gainesville Third place: University of North Carolina at Charlotte Social Media Award:
      College Level:
      First place: University of Colorado Boulder Middle/High School Level:
      First place: Newark Memorial High School, Newark, California STEM Engagement Award:
      College Level:
      First place: University of Notre Dame, Indiana Second place: University of North Carolina at Charlotte Third place: New York University, Brooklyn, New York Middle/High School Level:
      First place: Notre Dame Academy High School, Los Angeles, California Second place: Cedar Falls High School, Cedar Falls, Iowa Third place: Thomas Jefferson High School for Science and Technology, Alexandria, Virginia Service Academy Award:
      First place: United States Air Force Academy, USAF Academy, Colorado
      Vehicle Design Award:
      Middle/High School Level:
      First place: First Baptist Church of Manchester, Manchester, Connecticut Second place: Explorer Post 1010, Rockville, Maryland Third place: Plantation High School, Plantation, Florida Payload Design Award:
      Middle/High School Level:
      First place: Young Engineers in Action, LaPalma, California Second place: Cedar Falls High School, Cedar Falls, Iowa Third place: Spring Grove Area High School, Spring Grove, Pennsylvania Student Launch is one of NASA’s nine Artemis Student Challenges, activities which connect student ingenuity with NASA’s work returning to the Moon under Artemis in preparation for human exploration of Mars.
      The competition is managed by Marshall’s Office of STEM Engagement (OSTEM). Additional funding and support are provided by NASA’s OSTEM via the Next Gen STEM project, NASA’s Space Operations Mission Directorate, Northrup Grumman, National Space Club Huntsville, American Institute of Aeronautics and Astronautics, National Association of Rocketry, Relativity Space, and Bastion Technologies.
      To watch the full virtual awards ceremony, please visit NASA Marshall’s YouTube channel.
      For more information about Student Launch, visit:
      https://www.nasa.gov/stem/studentlaunch/home/index.html
      For more information about other NASA challenges, please visit:
      https://stem.nasa.gov/artemis/
      Taylor Goodwin
      Marshall Space Flight Center, Huntsville, Ala.
      256.544.0034 
      taylor.goodwin@nasa.gov
      Share
      Details
      Last Updated Jun 14, 2024 Related Terms
      Marshall Space Flight Center Explore More
      4 min read NASA Announces New System to Aid Disaster Response
      In early May, widespread flooding and landslides occurred in the Brazilian state of Rio Grande…
      Article 1 day ago 4 min read California Teams Win $1.5 Million in NASA’s Break the Ice Lunar Challenge
      Article 1 day ago 25 min read The Marshall Star for June 12, 2024
      Article 2 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA astronaut and Expedition 64 Flight Engineer Victor Glover reviews procedures on a computer for the Monoclonal Antibodies Protein Crystal Growth (PCG) experiment inside the Harmony module. Each year, Black Space Week celebrates the achievements of Black Americans in space-related fields.
      To kick-off Black Space Week 2024, NASA is collaborating with the National Space Council for the Beyond the Color Lines: From Science Fiction to Science Fact forum on Monday, June 17, at 11:30 a.m. EDT at the National Museum of African American History and Culture in Washington.
      Participants include Mr. Chirag Parikh, Deputy Assistant to the President and Executive Director, National Space Council; Dr. Quincy Brown, Director of Space STEM and Workforce Policy, White House National Space Council; and other private-sector and government agency leadership. 
      Current and former NASA astronauts will join the Standing on the Shoulders of Giants panel to discuss the past, present, and future of space exploration. The panel will be moderated by the Honorable Charles F. Bolden Jr.\, former administrator of NASA and a former astronaut who flew on four Space Shuttle missions. Participants include:
      Victor J. Glover, Jr., NASA Astronaut and U.S. Navy Captain Jessica Watkins, NASA Astronaut Yvonne Cagle, NASA Astronaut Leland Melvin, former NASA Astronaut Joan Higginbotham, former NASA Astronaut Additional panels include HERStory, sharing the untold stories of Black women leaders in space, STEM, arts, diplomacy, and business, and a discussion with young leaders, educators, and scientists about education and career paths for the future of space.
      Additional event details, including registration and streaming information, can be found at nmaahc.si.edu.
      View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      This summer between June 17 and July 2, NASA will fly aircraft over Baltimore, Philadelphia, parts of Virginia, and California to collect data on air pollutants and greenhouse gas emissions.  
      The campaign supports the NASA Student Airborne Research Program for undergraduate interns.
      Two NASA aircraft, including the P-3 shown here, will be flying over Baltimore, Philadelphia, Virginia and California between June 17 and July 2, to collect data on air pollutants and greenhouse gas emissions. Credit: (NASA/ Zavaleta) The East Coast flights will take place from June 17-26. Researchers and students will fly multiple times each week in Dynamic Aviation’s King Air B200 aircraft at an altitude of 1,000 feet over Baltimore and Philadelphia as well as Norfolk, Hampton, Hopewell, and Richmond in Virginia. Meanwhile, a NASA P-3 aircraft based out of NASA’s Wallops Flight Facility in Virginia will fly over the same East Coast locations to collect different measurements.
      The West Coast flights will occur from June 29 – July 2. During the period, those same aircraft will conduct similar operations over Los Angeles, Imperial Valley, and Tulare Basin in California.
      The research aircraft will fly at lower altitudes than most commercial planes and will conduct maneuvers including vertical spirals from 1,000 to 10,000 feet, circling over power plants, landfills, and urban areas. They will also occasionally conduct “missed approaches” at local airports, where the aircraft will perform a low-level flyby over a runway to collect samples close to the surface.
      The aircraft carry instruments that will collect data on a range of greenhouse gases including carbon dioxide and methane, as well as air pollutants such as nitrogen dioxide, formaldehyde, and ozone. One purpose of this campaign is to validate space-based measurements observed by the TEMPO (Tropospheric Emissions: Monitoring of Pollution) mission. Launched on a commercial satellite in April 2023, the TEMPO instrument provides hourly daytime measurements of air pollutants across the United States, northern Mexico, and southern Canada.
      “The goal is that this data we collect will feed into policy decisions that affect air quality and climate in the region,” said Glenn Wolfe, a research scientist and the principal investigator for the campaign at NASA’s Goddard Space Flight Center in Greenbelt, Maryland.
      The B-200 aircraft is owned by Dynamics Aviation, an aircraft company contracted by NASA.
      For more information about Student Airborne Research Program, visit:
      https://science.nasa.gov/earth-science/early-career-opportunities/student-airborne-research-program/
      By Tayler Gilmore
      NASA’s Goddard Space Flight Center, Greenbelt, Maryland
      Share
      Details
      Last Updated Jun 14, 2024 EditorJennifer R. MarderContactJeremy EggersLocationGoddard Space Flight Center Related Terms
      Earth Airborne Science Goddard Space Flight Center Tropospheric Emissions: Monitoring of Pollution (TEMPO) Wallops Flight Facility Explore More
      5 min read Surf, Turf, Above Earth: Students Participate in NASA Field Research
      Flying over and tromping through watery landscapes along the East Coast, working alongside NASA scientists,…
      Article 10 months ago 10 min read A Tale of Three Pollutants
      Freight, smoke, and ozone impact the health of both Chicago residents and communities downwind. A…
      Article 8 months ago 4 min read NASA Scientists Take to the Seas to Study Air Quality
      Article 1 week ago View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      A Terrier-Improved Orion sounding rocket carrying students experiments for the RockOn! mission successfully launched from NASA’s Wallops Flight Facility Aug. 17, 2023 at 6 a.m. EDT.NASA/ Kyle Hoppes More than 50 student and faculty teams are sending experiments into space as part of NASA’s RockOn and RockSat-C student flight programs. The annual student mission, “RockOn,” is scheduled to launch from Wallops Island, Virginia, on a Terrier-Improved Orion sounding rocket Thursday, June 20, with a launch window that opens at 5:30 a.m. EDT.
      An introduction to rocketry for college students
      The RockOn workshop is an introductory flight opportunity for community college and university students. RockOn participants spend a week at NASA’s Wallops Flight Facility, where they are guided through the process of building and launching an experiment aboard a sounding rocket.
      “RockOn provides students and faculty with authentic, hands-on experiences tied to an actual launch into space from a NASA facility,” said Chris Koehler, on contract with NASA as RockOn’s principal investigator. “These experiences are instrumental in the creation of our next STEM workforce.”
      RockOn student experiments are placed into canisters to be integrated into the payload.NASA/ Madison Olson Unique & advanced experiments
      In addition to the RockOn workshop experiments, the rocket will carry student team experiments from six different institutions as part of the RockSat-C program. The RockSat-C experiments are unique to each institution and were created off site.
      RockSat-C “has been an incredible introduction into the world of NASA and how flight missions are built from start to finish,” said TJ Tomaszewski, student lead for the University of Delaware. “The project started as just a flicker of an idea in students’ minds. After countless hours of design, redesign, and coffee, the fact that we finished an experiment capable of going to space and capable of conducting valuable scientific research makes me so proud of my team and so excited for what’s possible next. Everybody dreams about space, and the fact that we’re going to launch still doesn’t feel real.”
      Students participating in the 2024 RockSat-C program were able to see the RockOn rocket in the testing facility at Wallops Flight Facility.NASA/ Berit Bland RockSat-C participants include:
      Temple University, Philadelphia Experiments will utilize X-ray spectrometry, muon detection, and magnetometry to explore the interplay among cosmic phenomena, such as X-rays, cosmic muons, and Earth’s magnetic field, while also quantifying atmospheric methane levels as a function of altitude.
      Southeastern Louisiana University, Hammond The ION experiment aims to measure the plasma density in the ionosphere. This will be achieved by detecting the upper hybrid resonant frequency using an impedance probe mounted on the outside of the rocket and comparing the results to theoretical models. The secondary experiment, known as the ACC experiment, aims to record the rocket’s re-entry dynamics and measure acceleration in the x, y, and z directions.
      Old Dominion University, Norfolk, Virginia The Monarch3D team will redesign and improve upon a pre-existing experiment from the previous year’s team that will print in suborbital space. This project uses a custom-built 3D printer made by students at Old Dominion.
      University of Delaware, Newark Project UDIP-4 will measure the density and temperature of ionospheric electrons as a function of altitude and compare the quality of measurements obtained from different grounding methods. Additionally, the project focuses on developing and testing new CubeSat hardware in preparation for an orbital CubeSat mission named DAPPEr.
      Stevens Institute of Technology, Hoboken, New Jersey The Atmospheric Inert Gas Retrieval project will develop a payload capable of demonstrating supersonic sample collection at predetermined altitudes and investigating the noble gas fractionation and contamination of the acquired samples. In addition, their payload will test the performance of inexpensive vibration damping materials by recording and isolating launch vibrations using 3D-printed components.
      Cubes in Space, Virginia Beach, Virginia The Cubes in Space (CiS) project provides students aged 11 to 18 with a unique opportunity to conduct scientific and engineering experiments in space. CiS gives students hands-on experience and a deeper understanding of scientific and engineering principles, preparing them for more complex STEM studies and research in the future. Students develop and design their unique experiments to fit into clear, rigid plastic payload cubes, each about 1.5 inches on a side. Up to 80 of these unique student experiments are integrated into the nose cone of the rocket.
      Approximately 80 small cubes will be launched as part of the RockOn sounding rocket mission.Courtesy Cubes in Space/Jorge Salazar; used with permission Watch the launch
      The launch window for the mission is 5:30-9:30 a.m. EDT, Thursday June 20, with a backup day of June 21. The Wallops Visitor Center’s launch viewing area will open at 4:30 a.m. A livestream of the mission will begin 15 minutes before launch on the Wallops YouTube channel. Launch updates also are available via the Wallops Facebook page.
      These circular areas show where and when people may see the rocket launch in the sky, depending on cloud cover. The different colored sections indicate the time (in seconds) after liftoff that the sounding rocket may be visible.NASA/ Christian Billie NASA’s Sounding Rocket Program is conducted at the agency’s Wallops Flight Facility, which is managed by NASA’s Goddard Space Flight Center in Greenbelt, Maryland. NASA’s Heliophysics Division manages the sounding rocket program for the agency.

      Share
      Details
      Last Updated Jun 14, 2024 EditorAmy BarraContactAmy Barraamy.l.barra@nasa.govLocationWallops Flight Facility Related Terms
      Wallops Flight Facility For Colleges & Universities Goddard Space Flight Center Heliophysics Division Sounding Rockets Sounding Rockets Program STEM Engagement at NASA Explore More
      4 min read Double Header: NASA Sounding Rockets to Launch Student Experiments
      NASA's Wallops Flight Facility is scheduled to launch two sounding rockets carrying student developed experiments…
      Article 10 months ago 3 min read Sounding Rocket Takes a Second Look at the Sun
      Article 6 years ago 4 min read Big Science Drives Wallops’ Upgrades for NASA Suborbital Missions
      Article 1 month ago View the full article
  • Check out these Videos

×
×
  • Create New...