Jump to content

Hubble Glimpses a Bright Galaxy Group


NASA

Recommended Posts

  • Publishers

2 min read

Hubble Glimpses a Bright Galaxy Group

hubble-leda60847-3-flat-final.jpg?w=2046
This new NASA Hubble Space Telescope image shows a tangled group of interacting galaxies called LEDA 60847.
NASA/ESA/A. Barth (University of California – Irvine)/M. Koss (Eureka Scientific Inc.)/A. Robinson (Rochester Institute of Technology)/Processing: Gladys Kober (NASA/Catholic University of America)

This new NASA Hubble Space Telescope image shows a group of interacting galaxies known as LEDA 60847.

LEDA 60847 is classified as an active galactic nuclei, or AGN. An AGN has a supermassive black hole in the galaxy’s central region that is accreting material. The AGN emits radiation across the entire electromagnetic spectrum and shines extremely brightly. By studying powerful AGNs that are relatively nearby, astronomers can better understand how supermassive black holes grow and affect galaxies.

Galaxy mergers are relatively common occurrences. Most larger galaxies are the result of smaller galaxies merging. The Milky Way itself contains traces of other galaxies, indicating it is the product of past mergers. Astronomers believe somewhere between 5% and 25% of all galaxies are currently merging. 

This image of LEDA 60847 combines ultraviolet, visible, and near-infrared data from Hubble. The ability to see across all those wavelengths is one of the things that makes Hubble unique. Different types of light across the electromagnetic spectrum tell astronomers different things about our universe. Ultraviolet light traces the glow of stellar nurseries and is used to identify the hottest stars. Visible light shows us moderate-temperature stars and material, and also how the view would appear to our own eyes. Last but not least, near-infrared light can penetrate cold dust, allowing us to study warm gas and dust, and relatively cool stars.

LEARN MORE:

Media Contact:

Claire Andreoli
NASA’s Goddard Space Flight CenterGreenbelt, MD
claire.andreoli@nasa.gov

Share

Details

Last Updated
Jan 23, 2024
Editor
Andrea Gianopoulos
Location
Goddard Space Flight Center

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      To celebrate the 21st anniversary of the Hubble Space Telescope’s deployment into space, astronomers at the Space Telescope Science Institute in Baltimore, Md., pointed Hubble’s eye at an especially photogenic pair of interacting galaxies called Arp 273. The larger of the spiral galaxies, known as UGC 1810, has a disk that is distorted into a rose-like shape by the gravitational tidal pull of the companion galaxy below it, known as UGC 1813. This image is a composite of Hubble Wide Field Camera 3 data taken on December 17, 2010, with three separate filters that allow a broad range of wavelengths covering the ultraviolet, blue, and red portions of the spectrum.
      View the full article
    • By NASA
      Perseverance Perseverance Mission Overview Rover Components Where is Perseverance? Ingenuity Mars Helicopter Mission Updates Science Overview Science Objectives Science Instruments Science Highlights News and Features Multimedia Perseverance Raw Images Mars Resources Mars Exploration All Planets Mercury Venus Earth Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets 2 min read
      A Bright New Abrasion
      This image was acquired by the Front Right Hazard Avoidance Camera A on June 16, 2024 (Sol 1181) at the local mean solar time of 14:20:10. The image shows the area in front of the rover at Bright Angel with the arm extended as the PIXL instrument investigates the surface. NASA/JPL-Caltech Last week, Perseverance arrived at the long-awaited site of Bright Angel, named for being a light-toned rock that stands out in orbital data. The unique color here, as well as the surface characteristics and location on the edge of the ancient river channel Neretva Vallis, made Bright Angel a location of interest for the Mars 2020 Science Team.
      After capturing some stunning long-distance images of Bright Angel, Perseverance made the approach to the rocks. Closer camera images, Mastcam-Z, and SuperCam data showed intriguing surface textures on these light-toned rocks that the Science Team is actively working to understand.
      After a few days to process the beautiful images and exciting location, Perseverance executed a planned abrasion on the rocks in front of the rover, which can be seen in the above image if you look closely underneath the rover’s arm. This abrasion patch is named “Walhalla Glades” after an ancient archeological site in the Grand Canyon along the Colorado River, a tribute to Bright Angel’s location on the edge of the ancient Neretva Vallis river channel.
      Proximity science instruments were deployed to look at the abrasion patch in detail and provide high-resolution geochemical data of these rocks. In the Hazard Avoidance Camera image above, the PIXL instrument is pointed down at the abrasion patch on the rock surface as it performs a scan.
      The Science Team will take time to understand all the new data obtained at Bright Angel, comparing it to the past rocks Perseverance has investigated and determining if the area should be included in the sample cache onboard Perseverance. Characterizing the rocks of Bright Angel, connecting them to the surrounding rocks and sediment of Neretva Vallis, and placing them in context with the Crater Rim and Margin units should write an exciting chapter of the history of Jezero crater!
      Written by Eleanor Moreland, Ph.D. Student Collaborator at Rice University
      Share








      Details
      Last Updated Jun 20, 2024 Related Terms
      Blogs Explore More
      6 min read Sols 4219-4221: It’s a Complex Morning…


      Article


      2 days ago
      2 min read Perseverance Finds Popcorn on Planet Mars
      After months of driving, Perseverance has finally arrived at ‘Bright Angel’, discovering oddly textured rock…


      Article


      2 days ago
      4 min read Sols 4216-4218: Another ‘Mammoth’ Plan!


      Article


      3 days ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is no place for the faint-hearted. It’s dry, rocky, and bitter cold. The fourth planet from the Sun, Mars…


      All Mars Resources



      Rover Basics



      Mars Exploration Science Goals


      View the full article
    • By European Space Agency
      Photographing faint objects close to bright stars is incredibly difficult. Yet, by combining data from ESA's Gaia space telescope with ESO’s GRAVITY instrument on the ground, scientists managed just that. They took the first pictures of so far unseen dim companions of eight luminous stars. The technique unlocks the tantalising possibility to capture images of planets orbiting close to their host stars.
      View the full article
    • By NASA
      2 min read
      NASA Releases Hubble Image Taken in New Pointing Mode
      This NASA Hubble Space Telescope features the galaxy NGC 1546. NASA, ESA, STScI, David Thilker (JHU) NASA’s Hubble Space Telescope has taken its first new images since changing to an alternate operating mode that uses one gyro.
      The spacecraft returned to science operations June 14 after being offline for several weeks due to an issue with one of its gyroscopes (gyros), which help control and orient the telescope.
      This new image features NGC 1546, a nearby galaxy in the constellation Dorado. The galaxy’s orientation gives us a good view of dust lanes from slightly above and backlit by the galaxy’s core. This dust absorbs light from the core, reddening it and making the dust appear rusty-brown. The core itself glows brightly in a yellowish light indicating an older population of stars. Brilliant-blue regions of active star formation sparkle through the dust. Several background galaxies also are visible, including an edge-on spiral just to the left of NGC 1546.
      Hubble’s Wide Field Camera 3 captured the image as part of a joint observing program between Hubble and NASA’s James Webb Space Telescope. The program also uses data from the Atacama Large Millimeter/submillimeter Array, allowing scientists to obtain a highly detailed, multiwavelength view of how stars form and evolve.
      The image represents one of the first observations taken with Hubble since transitioning to the new pointing mode, enabling more consistent science operations. The NASA team expects that Hubble can do most of its science observations in this new mode, continuing its groundbreaking observations of the cosmos.
      “Hubble’s new image of a spectacular galaxy demonstrates the full success of our new, more stable pointing mode for the telescope,” said Dr. Jennifer Wiseman, senior project scientist for Hubble at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “We’re poised now for many years of discovery ahead, and we’ll be looking at everything from our solar system to exoplanets to distant galaxies. Hubble plays a powerful role in NASA’s astronomical toolkit.”
      Launched in 1990, Hubble has been observing the universe for more than three decades, recently celebrating its 34th anniversary. Read more about some of Hubble’s greatest scientific discoveries.
      Resources

      Download the image above


      NASA’s Hubble Restarts Science in New Pointing Mode


      Operating Hubble with Only One Gyroscope


      Hubble Pointing and Control


      Hubble Science Highlights


      Hubble Images

      Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contact:
      Claire Andreoli
      NASA’s Goddard Space Flight Center, Greenbelt, MD
      claire.andreoli@nasa.gov
      Share








      Details
      Last Updated Jun 18, 2024 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms
      Astrophysics Astrophysics Division Galaxies Goddard Space Flight Center Hubble Space Telescope Missions The Universe Keep Exploring Discover More Topics From NASA’s Hubble
      Hubble Space Telescope


      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


      Hubble Design



      Hubble Science



      Hubble’s Galaxies


      View the full article
    • By NASA
      ESA/Hubble & NASA, F. Niederhofe This NASA/ESA Hubble Space Telescope image features the globular cluster NGC 2005. It’s not an unusual globular cluster in and of itself, but it is a peculiarity when compared to its surroundings. NGC 2005 is located about 750 light-years from the heart of the Large Magellanic Cloud (LMC), which is the Milky Way’s largest satellite galaxy some 162,000 light-years from Earth. Globular clusters are densely-packed groups of stars that can hold tens of thousands or millions of stars. Their density means they are tightly bound by gravity and therefore very stable. This stability contributes to their longevity: globular clusters can be billions of years old, and are often comprised of very old stars. Studying globular clusters in space can be a little like studying fossils on Earth: where fossils give insights into the characteristics of ancient plants and animals, globular clusters illuminate the characteristics of ancient stars.
      Current theories of galaxy evolution predict that galaxies merge with one another. Astronomers think the relatively large galaxies we observe in the modern universe formed when smaller galaxies merged. If this is correct, then we would expect to see evidence that the most ancient stars in nearby galaxies originated in different galactic environments. Because globular clusters hold ancient stars, and because of their stability, they are an excellent laboratory to test this hypothesis.
      NGC 2005 is such a globular cluster, and its very existence provides evidence that supports the theory of galaxy evolution via mergers. Indeed, what makes NGC 2005 a bit peculiar from its surroundings, is the fact that its stars have a chemical composition that is distinct from the stars around it in the LMC. This suggests that the LMC underwent a merger with another galaxy somewhere in its history. That other galaxy has long-since merged and otherwise dispersed, but NGC 2005 remains behind as an ancient witness to the long-past merger.
      Text Credit: European Space Agency (ESA)

      View the full article
  • Check out these Videos

×
×
  • Create New...